Project description:Cervical-vaginal fluid (CVF) covers the lower part of the female reproductive system and functions in the homeostasis and immunity of the surrounding tissues. The proteome of this proximal fluid has mainly been studied in pregnant women, whereas the CVF proteome of non-pregnant women has not been analyzed in great detail. The CVF peptidome has not been reported to date. In the current study, we separated pooled CVF samples from healthy non-pregnant women into proteomic and peptidomic fractions, followed by mass spectrometry analysis. In total, we identified 1,087 unique proteins in CVF, of which 801 proteins were not previously identified in CVF. The presence of the tissue specific proteins oviductal glycoprotein-1 (OVGP-1) and tubulin polymerization-promoting protein family member 3 (TPPP3) in CVF strongly suggests that the tissues of the upper female reproductive tract contribute to the protein composition of CVF. The tremendous catalytic potential of CVF was highlighted by the identification of 85 proteases. The majority of identified proteases belonged to the serine protease catalytic type. Over 1,000 endogenous peptides were detected in the CVF peptidome, and 39 peptides are predicted to have antimicrobial activity. The detailed proteomic and peptidomic analysis of CVF will further aid in the delineation of physiological and pathobiological pathways related to reproduction, immunity and host defense, and assist in developing new biomarkers for malignant and other diseases of the female reproductive tract.
Project description:<p>The pregnancy vaginal microbiome contributes to risk of preterm birth, the primary cause of death in children under 5 years of age. Here we describe direct on-swab metabolic profiling by Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) for sample preparation-free characterisation of the cervicovaginal metabolome in two independent pregnancy cohorts (VMET, n = 160; 455 swabs; VMET II, n = 205; 573 swabs). By integrating metataxonomics and immune profiling data from matched samples, we show that specific metabolome signatures can be used to robustly predict simultaneously both the composition of the vaginal microbiome and host inflammatory status. In these patients, vaginal microbiota instability and innate immune activation, as predicted using DESI-MS, associated with preterm birth, including in women receiving cervical cerclage for preterm birth prevention. These findings highlight direct on-swab metabolic profiling by DESI-MS as an innovative approach for preterm birth risk stratification through rapid assessment of vaginal microbiota-host dynamics.</p><p><br></p><p><strong>Linked cross omic data sets:</strong></p><p>Meta-taxonomics data associated with this study are available in the European Nucleotide Archive (ENA): accession number <a href='https://www.ebi.ac.uk/ena/browser/view/PRJEB11895' rel='noopener noreferrer' target='_blank'>PRJEB11895</a>, <a href='https://www.ebi.ac.uk/ena/browser/view/PRJEB12577' rel='noopener noreferrer' target='_blank'>PRJEB12577</a> and <a href='https://www.ebi.ac.uk/ena/browser/view/PRJEB41427' rel='noopener noreferrer' target='_blank'>PRJEB41427</a>.</p>
Project description:The onset of menopause is accompanied by a dramatic increase in reported symptoms of vaginal dryness, soreness, irritation or itching, pain with intercourse and bleeding after intercourse. Collectively these affect 25-50% of women of post-menopausal age and significantly impact their quality of life. To examine how gene expression differs between these groups, surface vaginal epithelial cells were collected from postmenopausal women suffering from vaginal dryness and appropriate controls not suffering from dryness. Affymetrix GeneChip Human 1.0 ST microarrays were performed on RNA isolated from ten participants.
Project description:The onset of menopause is accompanied by a dramatic increase in reported symptoms of vaginal dryness, soreness, irritation or itching, pain with intercourse and bleeding after intercourse. Collectively these affect 25-50% of women of post-menopausal age and significantly impact their quality of life. To examine how gene expression differs between these groups, surface vaginal epithelial cells were collected from postmenopausal women suffering from vaginal dryness and appropriate controls not suffering from dryness. Affymetrix GeneChip Human 1.0 ST microarrays were performed on RNA isolated from ten participants. Suitable RNA was extracted from ten participants which were classified into two groups, the dryness and control groups, based on diagnosis of dryness by a nurse during gynecoligical examination.