Project description:To explore the underlying mechanism of recurrent SARS-CoV-2 infection in convalescent patients. We performed single-cell RNA sequencing on peripheral blood mononuclear cells isolated from a recurrent patient, taking 14 recovered COVID-19 patients and 4 dead COVID-19 patients as controls.
Project description:The existence of asymptomatic and re-detectable positive COVID-19 patients presents the disease control challenges of COVID-19. Most studies on immune response of COVID-19 have focused on the moderately or severely symptomatic patients, however little is known about the immune response in asymptomatic and re-detectable positive patients. Here we performed a comprehensive analysis of the transcriptomic profiles of PBMCs from 48 COVID-19 patients.
Project description:The objective of this experiment was to compare the transcriptomic profile (NanoString platform) of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients with mild disease, and patients with severe COVID-19 with and without dexamethasone treatment, and healthy controls. We analyzed PBMCs from 4 mild COVID patients, 3 severe COVID patients,4 severe COVID patients treated with dexamethasone, and 5 healthy controls
Project description:Dexamethasone improves the survival of COVID-19 patients in need of supplemental oxygen therapy. Hospitalized COVID-19 patients eligible for dexamethasone therapy were recruited from the general care ward in several centers in Greece and the Netherlands and whole blood transcriptomic analysis was performed before and after starting dexamethasone treatment. Peripheral blood mononuclear cells (PBMCs) were isolated from healthy individuals and COVID-19 patients and stimulated with inactivated SARS-CoV-2 ex vivo in the presence or absence of dexamethasone and their transcriptome was assessed.
Project description:PBMCs were extracted from 8 donors (an influenza, 2 mild and 2 severe COVID-19 patients, 3 healthy donors). Datasets generated by single-cell ATAC sequencing platform from 10X genomics. The library was generated by single-cell ATAC kit v1.1 following manufacturer's instructions.
Project description:Although most SARS-CoV-2-infected individuals experience mild COVID-19, some patients suffer from severe COVID-19, which is accompanied by acute respiratory distress syndrome and systemic inflammation. To identify factors driving severe progression of COVID-19, we performed single-cell RNA-seq using peripheral blood mononuclear cells (PBMCs) obtained from healthy donors, patients with mild or severe COVID-19, and patients with severe influenza. Patients with COVID-19 exhibited hyper-inflammatory signatures across all types of cells among PBMCs, particularly upregulation of the TNF/IL-1beta-driven inflammatory response as compared to severe influenza. In classical monocytes from patients with severe COVID-19, type I IFN response co-existed with the TNF/IL-1beta-driven inflammation, and this was not seen in patients with milder COVID-19 infection. Based on this, we propose that the type I IFN response exacerbates inflammation in patients with severe COVID-19 infection.
Project description:Coronavirus disease 2019 (COVID-19) can be asymptomatic or lead to a wide spectrum of symptoms, ranging from mild upper respiratory system involvement to acute respiratory distress syndrome, multi-organ damage and death. In this study, we explored the potential of microRNAs (miRNA) in delineating patient condition and in predicting clinical outcome. Analysis of the circulating miRNA profile of COVID-19 patients, sampled at different hospitalization intervals after admission, allowed to identify miR-144-3p as a dynamically regulated miRNA in response to COVID-19.
Project description:Red blood cells (RBC) depleted whole blood from COVID-19 patients and controls was harvested and processed in order to performed 10X single cell RNA-seq. For COVID-19 patients 2 samples 10 days a part were analyzed.