Project description:iSGS exhibits distinct genomic methylation signatures. These signatures expand current understanding of the iSGS phenotype and may inform the direction of future experimental studies.
Project description:LC-MS/MS data obtained from subglottic biopsies collected from 12 individuals with idiopathic subglottic stenosis, as well as 3 age-, sex-, and race/ethnicity-matched controls. All tissue donors were women of White race and non-Latino or Hispanic ethnicity. Sample preparation, mass spectrometry, and data analysis details are available in the published article.
Project description:ObjectiveIdiopathic subglottic stenosis (iSGS) is a chronic inflammatory condition that causes dyspnea and affects middle-aged women of White race and non-Latino or Hispanic ethnicity. To better characterize its phenotype and pathogenesis, we assessed the proteomic and genomic methylation signatures of subglottic tissue collected from iSGS patients compared to controls.Study designMolecular analysis of clinical biospecimens.MethodsWe collected subglottic tissue biopsies from 12 patients during direct laryngoscopy, immediately prior to surgical treatment of iSGS; as well as from 4 age-, sex-, and race/ethnicity-matched control patients undergoing other direct laryngoscopic procedures. We isolated protein and genomic DNA, acquired proteomic data using label-free quantitative mass spectrometry techniques, and acquired genome-wide methylation data using bisulfite conversion and a microarray platform. We compared molecular profiles across the iSGS and control groups, and with respect to clinical course in the iSGS group. Eight of the 12 iSGS patients underwent subsequent blood collection and plasma isolation for further assessment.ResultsProteomic analysis revealed 42 differentially abundant proteins in the iSGS biopsies compared to controls, inferring enrichment of biological pathways associated with early wound healing, innate immunity, matrix remodeling, and metabolism. Proteome-based hierarchical clustering organized patients into two iSGS and one control subgroups. Methylation analysis revealed five hypermethylated genes in the iSGS biopsies compared to controls, including the biotin recycling enzyme biotinidase (BTD). Follow-up analysis showed elevated plasma BTD activity in iSGS patients compared to both controls and published normative data.ConclusioniSGS exhibits distinct proteomic and genomic methylation signatures. These signatures expand current understanding of the iSGS phenotype, support the possibility of disease subgroups, and should inform the direction of future experimental studies.Level of evidenceNot applicable Laryngoscope, 131:E540-E546, 2021.
Project description:Idiopathic Pulmonary Fibrosis (IPF) is a chronic progressive lung disease that affects more than 5 million people worldwide with a steady increase in both incidence and mortality. There is currently no effective therapy and the median survival without transplant is 2-5 years. The etiological factor is unknown, but several observational and pathogenesis studies suggest that environmental agents may cause IPF. DNA methylation is a type of chemical modification of DNA such environmental and occupational factors, that can induced a changes in the regulation of biological processes and link to diseases such as a cancer. We hypothesize that the global changes in methylation patterns of IPF lungs caused by environmental factors. In this study we will identify the global methylation signatures of the IPF lung and to compare to methylation signature of lung cancer. The DNA methylation profiles of IPF lung tissue differs from control lung but it shares great similarity with that of lung cancer.
Project description:Idiopathic Pulmonary Fibrosis (IPF) is a chronic progressive lung disease that affects more than 5 million people worldwide with a steady increase in both incidence and mortality. There is currently no effective therapy and the median survival without transplant is 2-5 years. The etiological factor is unknown, but several observational and pathogenesis studies suggest that environmental agents may cause IPF. DNA methylation is a type of chemical modification of DNA such environmental and occupational factors, that can induced a changes in the regulation of biological processes and link to diseases such as a cancer. We hypothesize that the global changes in methylation patterns of IPF lungs caused by environmental factors. In this study we will identify the global methylation signatures of the IPF lung and to compare to methylation signature of lung cancer. The DNA methylation profiles of IPF lung tissue differs from control lung but it shares great similarity with that of lung cancer. Immunoprecipitated methylated DNA from 12 IPF lungs, 10 lung adenocarcinomas and 10 normal histology lungs obtained from the same group of adenocarcinoma patients was hybridized to Agilent human CpG Islands Microarrays. Only probes with a hybridization Tm value between 79 C and 93C were included in the analysis because these show higher quality signal. All probes were divided according to their Tm into 14 groups/bins differing by 1C. Probe signals in each bin were standardized to have an average of 0 and a standard deviation of 1. To work in a CpG island oriented manner, we scored each island for its likelihood to be methylated. For that purpose, each probe was mapped to the genome and the signals of the probes that were mapped to a single CpG island were averaged to obtain the islandM-bM-^@M-^Ys methylation score. Data analysis was performed using BRB-Array Tools and DAVID Bioinformatics Resources software packages.