Project description:Antibiotic use can lead to expansion of multi-drug resistant pathobionts within the gut microbiome that can cause life-threatening infections. Selective alternatives to conventional antibiotics are in dire need. Here, we describe a Klebsiella PhageBank that enables the rapid design of antimicrobial bacteriophage cocktails to treat multi-drug resistant Klebsiella pneumoniae. Using a transposon library in carbapenem-resistant K. pneumoniae, we identified host factors required for phage infection in major Klebsiella phage families. Leveraging the diversity of the PhageBank and experimental evolution strategies, we formulated combinations of phages that minimize the occurrence of phage resistance in vitro. Optimized bacteriophage cocktails selectively suppressed the burden of multi-drug resistant K. pneumoniae in the mouse gut microbiome and drove bacterial populations to lose key virulence factors that act as phage receptors. Further, phage-mediated diversification of bacterial populations in the gut enabled co-evolution of phage variants with higher virulence and a broader host range. Altogether, the Klebsiella PhageBank represents a roadmap for both phage researchers and clinicians to enable phage therapy against a critical multidrug-resistant human pathogen.
Project description:The emergence and spread of polymyxin resistance, especially among Klebsiella pneumoniae isolates threaten the effective management of infections. This study profiled for polymyxin resistance mechanisms and investigated the activity of polymyxins plus vancomycin against carbapenem- and polymyxin-resistant K. pneumoniae.
Project description:The study aimed to characterize plasmids mediating carbepenem resistance in Klebsiella pneumoniae in Pretoria, South Africa. We analysed 56 K. pneumoniae isolates collected from academic hospital around Pretoria. Based on phenotypic and molecular results of these isolates, 6 representative isolates were chosen for further analysis using long reads sequencing platform. We observed multidrug resistant phenotype in all these isolates, including resistance to aminoglycosides, tetracycline, phenicol, fosfomycin, floroquinolones, and beta-lactams antibiotics. The blaOXA-48/181 and blaNDM-1/7 were manily the plasmid-mediated carbapenemases responsible for carbapenem resistance in the K. pneumoniae isolates in these academic hospitals. These carbapenemase genes were mainly associated with plasmid replicon groups IncF, IncL/M, IncA/C, and IncX3. This study showed plasmid-mediated carbapenemase spread of blaOXA and blaNDM genes mediated by conjugative plasmids in Pretoria hospitals.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain AJ218.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain KPC2.
Project description:Polymyxin B (PB) is introduced into the clinic as the last-line therapy against carbapenem-resistant <i>Klebsiella pneumoniae</i> (CRKP). Unfortunately, increased resistance to PB in <i>Klebsiella pneumoniae</i> (<i>K. pneumoniae</i>) has threatened global health. Resistance of <i>K. pneumoniae</i> to PB was induced by passaging in serial concentrations of PB and determined by microbroth dilution method. Growth characteristics of induced strains including growth curve, reversibility of resistance, and biofilm formation (crystal violet staining method) were measured. This study employed TMT-labeled quantitative proteomics and LC-MS/MS metabolomics analysis to investigate the key biological processes associated with PB resistance in <i>K. pneumoniae</i>. A total of 315 differentially expressed proteins (DEPs) were identified, of which 133 were upregulated and 182 were downregulated in the PB-resistant <i>K. pneumoniae</i>. KEGG enrichment analysis revealed that the DEPs were mainly involved in ATP-binding cassette (ABC) transporters and cationic antimicrobial peptide (CAMP) resistance. Proteins related to central carbon metabolism were inhibited in the PB-resistant <i>K. pneumoniae</i>, but proteins mediating LPS modification were activated. Transcriptional levels of CAMP resistance-related proteins were significantly different between PB-susceptible and -resistant <i>K. pneumoniae</i>. PB treatment led to an increase in reactive oxygen species (ROS) levels of <i>K. pneumoniae</i>. Metabolomics data demonstrated that 23 metabolites were significantly upregulated in PB-resistant <i>K. pneumoniae</i> and 5 were downregulated. The differential metabolites were mainly lipids, including glycerophospholipids, sphingolipids, and fatty acids. Exposure to PB resulted in increased level of phospholipid transport gene <i>mlaF</i> in <i>K. pneumoniae</i>. Our study suggested that membrane remodeling and inhibited central carbon metabolism are conducive to the development of PB resistance in <i>K. pneumoniae</i>.
Project description:The emergence of polymyxin resistance in carbapenem-resistant and extended-spectrum -lactamase (ESBL)-producing bacteria is a critical threat to human health, and new treatment strategies are urgently required. Here, we investigated the ability of the safe-for-human use ionophore PBT2 to restore antibiotic sensitivity in polymyxin-resistant, ESBL-producing, carbapenem-resistant Gram-negative human pathogens. PBT2 was observed to resensitize Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including the less-toxic next-generation polymyxin derivative, FADDI-287. We were unable to select for mutants resistant to PBT2 + FADDI-287 in polymyxin resistant E. coli containing a plasmid-borne mcr-1 gene or K. pneumoniae carrying a chromosomal mgrB mutation. Using a highly invasive K. pneumoniae strain engineered for polymyxin resistance through mgrB mutation, we successfully demonstrated the efficacy of PBT2 + FADDI-287 in vivo for the treatment of Gram-negative sepsis. These data present a new treatment modality to break antibiotic resistance in high priority polymyxin-resistant Gram-negative pathogens.