Project description:During the nest-founding phase of the bumble bee colony cycle, queens undergo striking changes in maternal care behavior. Early in the founding phase, prior to the emergence of workers in the nest, queens are reproductive and also provision and feed their offspring. However, later in the founding phase, queens cease feeding offspring and become specialized on reproduction. This transition is synchronized with the emergence of workers in the colony, who assume the task of feeding their siblings. Using a social manipulation experiment, we tested the hypothesis that workers socially regulate the transition from feeding brood to specialization on reproduction in nest-founding bumble bee queens. Consistent with this hypothesis, we found that early-stage queens with workers prematurely added to their nests reduce their brood-feeding behavior and increase egg-laying, and likewise, late-stage queens increase their brood-feeding behavior and decrease egg-laying when workers are removed from their nests. Further, brood-feeding and egg-laying behavior were negatively correlated in these queens. We used an Agilent brain EST-based microarray to explore a second hypothesis, that workers alter brain gene expression in nest-founding queens. We found evidence that brain gene expression in nest-founding queens is altered by the presence of workers, with the effect much stronger in late-stage founding queens. Additionally, expression levels of some genes were correlated with quantitative differences in brood-feeding and egg-laying behavior. This study provides new insights into how the transition from feeding brood to specialization on reproduction in bumble bee queens is regulated during the nest initiation phase of the colony cycle.
Project description:LC-ESI-MS/MS data files (positive and negative ion monitoring modes) of samples collected from three colonies of the stingless bee Scaptotrigona depilis: honey, fermented pollen, nurse bees, pupae, larvae, larval food from brood cells with eggs, larval food from brood cells with larvae, brood fungus, cerumen, propolis, colony entrance and the controls.
Project description:Social caste determination in the honey bee is assumed to be determined by the dietary status of the young larvae and translated into physiological and epigenetic changes through nutrient-sensing pathways. We have employed Illumina/Solexa sequencing to examine the small RNA content in the bee larval food source, and show that worker jelly is enriched in miRNA complexity and abundance relative to royal jelly. The miRNA levels in worker jelly were 7-215 fold higher than in royal jelly, and both jellies showed dynamic changes in miRNA content during the 4th to 6th day of larval development. Adding specific miRNAs to royal jelly elicited significant changes in queen larval mRNA expression and in morphological characters of the emerging adult queen bee. We propose that miRNAs in the nurse bee secretions constitute an additional element in the regulatory control of caste determination in the honey bee.
Project description:Social caste determination in the honey bee is assumed to be determined by the dietary status of the young larvae and translated into physiological and epigenetic changes through nutrient-sensing pathways. We have employed microRNA gene-microarray, and observed that both worker jelly and royal jelly showed dynamic changes in miRNA content during the 4th to 6th day of larval development . Adding specific miRNAs to royal jelly elicited significant changes in queen larval mRNA expression and in morphological characters of the emerging adult queen bee. We propose that miRNAs in the nurse bee secretions constitute an additional element in the regulatory control of caste determination in the honey bee.