Project description:Interventions: Auricularia auricula-judae diet group:On the basis of normal diet, the total amount of dried Auricularia auricula-judae is 30g per week, which can be divided into 3-4 days to eat, dry Auricularia auricula-judae can be boiled in warm water and added when cooking or cold dishes, or when making porridge and soup.;Auricularia auricula-judae free diet group:Normal diet, diet does not contain black fungus.
Primary outcome(s): Liver metastasis recurrence rate
Study Design: Parallel
Project description:Auricularia auricula is a well-known traditional edible and medicinal fungus with high nutritional and pharmacological values, as well as metabolic and immunoregulatory properties. However, the exact mechanisms underlying the effects of Auricularia auricula polysaccharides (AAP) on obesity and related metabolic endpoints, including the role of the gut microbiota, remain insufficiently understood. To determine the mechanistic role of the gut microbiota in observed anti-obesogenic effects AAP, faecal microbiota transplantation (FMT) and pseudo germ-free mice model treated with antibiotics were also applied, together with 16S rRNA genomic-derived taxonomic profiling. HFD murine exposure to AAP thwarted weight-gains, reduced fat depositing, together with upregulating thermogenesis proteomic biomarkers within adipose tissue. These effects were associated with diminished intestine/bloodstream-borne lipid transportation, together with enhanced glucose tolerance. FMT administered in tandem with antibiotic treatment demonstrated the intestinal microbiota was necessary in deploying AAP anti-obesogenic functions. Intestine-dwelling microbial population assessments discovered AAP to enhance (in a selective manner) Papillibacter cinnamivorans, a commensal bacterium having reduced presence within HFD mice. Notably, HFD mice treated with oral formulations of Papillibacter cinnamivorans diminished obesity and was linked to decreased intestinal lipid transportation. Datasets from the present study show that AAP thwarted dietary-driven obesity and metabolism-based disorders through regulating intestinal lipid transportation, a mechanism that is dependent on the gut commensal Papillibacter cinnamivorans. These results indicated AAP and Papillibacter cinnamivorans as newly identified pre- and probiotics that could possibly serve as novel countermeasure against obesity.
Project description:Auricularia auricula is a well-known traditional edible and medicinal fungus with high nutritional and pharmacological values, as well as metabolic and immunoregulatory properties. However, the exact mechanisms underlying the effects of Auricularia auricula polysaccharides (AAP) on obesity and related metabolic endpoints, including the role of the gut microbiota, remain insufficiently understood. To determine the mechanistic role of the gut microbiota in observed anti-obesogenic effects AAP, faecal microbiota transplantation (FMT) and pseudo germ-free mice model treated with antibiotics were also applied, together with 16S rRNA genomic-derived taxonomic profiling. HFD murine exposure to AAP thwarted weight-gains, reduced fat depositing, together with upregulating thermogenesis proteomic biomarkers within adipose tissue. These effects were associated with diminished intestine/bloodstream-borne lipid transportation, together with enhanced glucose tolerance. FMT administered in tandem with antibiotic treatment demonstrated the intestinal microbiota was necessary in deploying AAP anti-obesogenic functions. Intestine-dwelling microbial population assessments discovered AAP to enhance (in a selective manner) Papillibacter cinnamivorans, a commensal bacterium having reduced presence within HFD mice. Notably, HFD mice treated with oral formulations of Papillibacter cinnamivorans diminished obesity and was linked to decreased intestinal lipid transportation. Datasets from the present study show that AAP thwarted dietary-driven obesity and metabolism-based disorders through regulating intestinal lipid transportation, a mechanism that is dependent on the gut commensal Papillibacter cinnamivorans. These results indicated AAP and Papillibacter cinnamivorans as newly identified pre- and probiotics that could possibly serve as novel countermeasure against obesity.
Project description:Auricularia auricula is a well-known traditional edible and medicial fungus with high nutritional and pharmacological values, as well as metabolic and immunoregulatory properties. However, the exact mechanisms underlying the effects of Auricularia auricula polysaccharides (AAP) on obesity and related metabolic endpoints, including the role of the gut microbiota, remain insufficiently understood. To determine the mechanistic role of the gut microbiota in observed anti-obesogenic effects AAP, faecal microbiota transplantation (FMT) and pseudo germ-free mice model treated with antibiotics were also applied, together with 16S rRNA genomic-derived taxonomic profiling. HFD murine exposure to AAP thwarted weight-gains, reduced fat depositing, together with upregulating thermogenesis proteomic biomarkers within adipose tissue. These effects were associated with diminished intestine/bloodstream-borne lipid transportation, together with enhanced glucose tolerance. FMT administered in tandem with antibiotic treatment demonstrated the intestinal microbiota was necessary in deploying AAP anti-obesogenic functions. Intestine-dwelling microbial population assessments discovered AAP to enhance (in a selective manner) Papillibacter cinnamivorans, a commensal bacterium having reduced presence within HFD mice. Notably, HFD mice treated with oral formulations of Papillibacter cinnamivorans diminished obesity and was linked to decreased intestinal lipid transportation. Datasets from the present study show that AAP thwarted dietary-driven obesity and metabolism-based disorders through regulating intestinal lipid transportation, a mechanism that is dependent on the gut commensal Papillibacter cinnamivorans. These results indicated AAP and Papillibacter cinnamivorans as newly identified pre- and probiotics that could possibly serve as novel countermeasure against obesity