Project description:Melon RNA-Seq analysis was used to identify candidate resistance genes and to understand the early molecular processes deployed during melon versus Fusarium oxysporum f.sp. melonis Snyd. & Hans race 1.2 (FOM1.2) interaction in the resistant doubled haploid line NAD as opposed to the susceptible genotype Charentais-T at 24 and 48 hours post inoculation (hpi).
Project description:Transcriptome analysis reveals the response mechanism of Frl-mediated resistance to Fusarium oxysporum f. sp. radicis-lycopersici (FORL) infection in tomato
Project description:Upon exposure to unfavorable environmental conditions, plants need to respond quickly to maintain their homeostasis. For instance, physiological, biochemical and transcriptional changes occur during plant-pathogen interaction. In the case of Vanilla planifolia Jacks., a worldwide economically important crop, it is susceptible to Fusarium oxysporum f. sp. vanillae. This pathogen causes root and stem rot in vanilla plants that lead to plant death. To investigate how vanilla plants, respond at the transcriptional level upon infection with F. oxysporum f. sp. vanillae, here we employed the RNA-Seq approach to analyze the dynamics of whole-transcriptome changes during two-time frames of the infection. Analysis of global gene expression profiles indicated that the major transcriptional change occurred at 2 dpi, in comparison to 10 dpi. Whereas 3420 genes were found with a differential expression at 2 dpi, only 839 were identified at 10 dpi. The analysis of the transcriptional profile at 2 dpi suggests that, among other responses, vanilla plants prepare to counter the infection by gathering a pool of translational regulation-related transcripts. The screening of transcriptional changes of V. planifolia Jacks upon infection by F. oxysporum f. sp. vanillae provides insights into the plant molecular response, particularly the upregulation of ribosomal proteins at early stages. Thus, we propose that the plant-pathogen interaction between V. planifolia Jacks and F. oxysporum f. sp. vanillae causes a transcriptional reprogramming coupled with a translational regulation. Altogether, this study provides the identification of molecular players that could help to fight the most damaging disease of vanilla.
Project description:Fusarium oxysporum causes Fusarium wilt syndrome in more than 120 different plant hosts, including globally important crops such as tomato, cotton, banana, melon, etc. F. oxysporum shows high host specificity in over 150 formae speciales and have been ranked in the top 10 plant fungal pathogens. Although three PMTs encoded by the pmt1, pmt2, and pmt4 are annotated in the genome of F. oxysporum, their functions have not been reported. As O-mannosylation is not found in plants, a comprehensive understanding of PMTs in F. oxysporum becomes attractive for the development of new strategy against Fusarium wilt. In order to understand the molecular mechanism of the differential functions of three PMTs, a comparative O-glycoproteome analysis of the pmt mutants were carried out.
Project description:Deep sequencing of mRNA from Fusarium oxysporum f. sp. Cubense 1 and 4 after infecting Musa acuminata 0h and 48h. Analysis of ploy(A)+ RNA of different hours after infecting of Musa acuminata
Project description:We performed a comparative study to determine the proteome of extracellular vesicles (EVs) from the cotton pathogen Fusarium oxysporum f. sp. vasinfectum (Fov), recovered from two growth conditions in vitro. Label-free quantitative protemics was used to find significant enrichment of proteins between EV samples, the secretome (secreted-soluble proteins) and the cell lysate. Our results show that some proteins were exclusive to EVs and were upregulated compared to the secretome or cell lysate.