Project description:The experiment was designed to display differential gene expression profiling in three human intrahepatic cholangiocarcinoma (ICC) cells upon knockdow of LKB1 tumor suppressor, by using RNAseq technology.
Project description:We compared transcriptomic profiles of 23 ICC tumor specimens to hepatocellular carcinoma (HCC) specimens using Affymetrix mRNA array and the miRNA array platforms to search for unique gene signatures linked to patient prognosis. ICC and HCC share common stem-like molecular characteristics and stem-like tumor features associated with poor prognosis. Gene expression profiling of 16 intrahepatic cholangiocarcinoma (ICC), 7 mixed type of combined HCC and ICC (CHC), 2 Hepatic Adenoma, 5 Focal Nodular Hyperplasia, and 7 Non-Tumor Tissues were performed.
Project description:BACKGROUND & AIMS: Cholangiocarcinoma, the second most common liver cancer, can be classified as intrahepatic (ICC) or extrahepatic. We performed an integrative genomic analysis of ICC samples from a large series of patients. METHODS: We performed gene expression profile, high-density single nucleotide polymorphism array, and mutation analyses using formalin-fixed ICC samples from 149 patients. Associations with clinico-pathological traits and patient outcomes were examined for 119 cases. Class discovery was based on a non-negative matrix factorization algorithm and significant copy number variations (CNV) were identified by GISTIC analysis. Gene set enrichment analysis was used to identify signaling pathways activated in specific molecular classes of tumors, and to analyze their genomic overlap with hepatocellular carcinoma (HCC). RESULTS: We identified 2 main biological classes of ICC. The inflammation class (38% of ICCs) is characterized by activation of inflammatory signaling pathways, overexpression of cytokines, and STAT3 activation. The proliferation class (62%) is characterized by activation of oncogenic signaling pathways (including RAS, mitogen-activated protein kinase, and MET), DNA amplifications at 11q13.2, deletions at 14q22.1, mutations in KRAS and BRAF, and gene expression signatures previously associated with poor outcomes for patients with HCC. CNV-based clustering was able to further refine these molecular groups. We identified high-level amplifications in 5 regions, including 1p13 (9%) and 11q13.2 (4%), and several focal deletions, such as 9p21.3 (18%) and 14q22.1 (12% in coding regions for the SAV1 tumor suppressor). In a complementary approach, we identified a gene expression signature that was associated with reduced survival times of patients with ICC; this signature was enriched in the proliferation class (P<0.001). CONCLUSIONS: We used an integrative genomic analysis to identify 2 classes of ICC. The proliferation class has specific copy number alterations, many features of the poor-prognosis signatures for HCC, and is associated with worse outcome. Different classes of ICC, based on molecular features, might therefore require different treatment approaches. Gene-expression profiling was performed using formalin-fixed, paraffin-embedded intrahepatic cholangiocarcinoma tissues obtained at the time of surgical resection.
Project description:We compared transcriptomic profiles of ICC tumor specimens to hepatocellular carcinoma (HCC) specimens using Affymetrix mRNA array and the miRNA array platforms to search for unique gene signatures linked to patient prognosis. ICC and HCC share common stem-like molecular characteristics and stem-like tumor features associated with poor prognosis. Gene expression profiling of 16 intrahepatic cholangiocarcinoma (ICC), 7 mixed type of combined hepatocellular cholangiocarcinoma (CHC), 2 Hepatic adenoma, 3 focal nodular hyperplasia (FNH), 5 non-tumor liver tissues, and 2 CCA cell lines were performed.
Project description:The experiment was designed to display differential gene expression profiling in three human intrahepatic cholangiocarcinoma (ICC) cells upon knockdow of LKB1 tumor suppressor, by using RNAseq technology. LKB1 was first attenuated in three ICC cells: HuH-28, RBE, and SSP-25 by siRNA-mediated knockdown. Total RNA was extracted from duplicated cancers cells transfected with control siRNA and LKB1 specific siRNA at 48h posttransfection for RNAseq analysis. Differentially expressed genes in LKB1-attenuated ICC cells were identified in comparison to that in ICC cells transfected with control siRNA.
Project description:We generated 100 M of high-quality sequencing reads (~10 M per sample) and catalogued the expression profiles of 1643 microRNA in each sample. The analysis showed differences of microRNAs between intrahepatic cholangiocarcinoma and normal bile duct tissues.
Project description:A \"Cartes d'Identite des Tumeurs\" (CIT) project from the french Ligue Nationale Contre le Cancer (http://cit.ligue-cancer.net). This serie showed the heterogeneity of tumor microenvironment across intrahepatic cholangiocarcinoma.