Project description:During placentation, placental cytotrophoblast cells differentiate into syncytiotrophoblast cells and extravillous trophoblast cells. In placenta, the expression of various genes is regulated by the Hippo pathway through the transcriptional coactivator YAP/TAZ-TEAD activity. To examine the effect of YAP/TAZ and/or TEAD on trophoblast differentiation, knockdown experiments were performed. Microarray analysis were performed to identify YAP/TAZ and/or TEAD target genes in human trophoblast.
Project description:Angiogenesis, the process by which endothelial cells (ECs) form new blood vessels from existing ones, is intimately linked to the tissue's metabolic milieu and often occurs at nutrient-deficient sites. However, ECs rely on sufficient metabolic resources to support growth and proliferation. How endothelial nutrient acquisition and usage are regulated is unknown. Here we show that these processes are dictated by YAP/TAZ-TEAD – a transcriptional module whose function is highly responsive to changes in the tissue environment. ECs lacking YAP/TAZ or their transcriptional partners, TEAD1, 2, and 4 fail to divide, resulting in stunted vascular growth in mice. Conversely, activation of TAZ, the more abundant paralogue in ECs, boosts proliferation, leading to vascular hyperplasia. We find that YAP/TAZ promote angiogenesis by fueling nutrient mTORC1 signaling. By orchestrating the transcription of a repertoire of cell-surface transporters, YAP/TAZ-TEAD stimulate the import of amino acids and other essential nutrients, thereby enabling mTORC1 pathway activation. Dissociating mTORC1 from these nutrient inputs – elicited by the loss of Rag GTPases – inhibits mTORC1 activity and prevents YAP/TAZ-dependent vascular growth. These findings define a pivotal role for YAP/TAZ-TEAD in steering endothelial mTORC1 and illustrate the essentiality of coordinated nutrient fluxes in the vasculature.
Project description:Dysregulation of the Hippo pathway and the consequent activation of its downstream targets, the transcriptional co-activators YAP and TAZ (YAP/TAZ), drives oncogenic transcriptional programs upon binding TEAD transcription factors in multiple human malignancies. The recent development of small molecule TEAD inhibitors (smTEADi) provides an opportunity to therapeutically target Hippo pathway dysregulation in cancer. In this regard, HPV-negative head and neck squamous cell carcinoma (HNSCC) harbor multiple genetic alterations that promote YAP/TAZ hyperactivation, raising the possibility that HNSCC cells might be dependent on YAP/TAZ-TEAD driven oncogenic transcriptional programs. To test this hypothesis, we examined the antitumor activity of the novel smTEADi, SW-682 and genetically encoded TEAD inhibitor peptide (pTEADi) in Cal33 HPV-negative HNSCC cell line-derived xenograft model. To elucidate the transcriptomic changes upon YAP/TAZ-TEAD inhibition, RNA extracted from xenograft tumors treated with SW-682 or pTEADi, as well as control, was subjected to RNA sequencing.
Project description:The optic vesicle comprises a pool of bi-potential progenitor cells from which the retinal pigment epithelium (RPE) and neural retina fates segregate during ocular morphogenesis. Several transcription factors and signaling pathways have been shown to be important for RPE maintenance and differentiation, but an understanding of the initial fate specification and determination of this ocular cell type is lacking. We show that Yap/Taz-Tead activity is necessary and sufficient for optic vesicle progenitors to adopt RPE identity in zebrafish. A Teadresponsive transgene is expressed within the domain of the optic cup from which RPE arises, and Yap immunoreactivity localizes to the nuclei of prospective RPE cells. yap (yap1) mutants lack a subset of RPE cells and/or exhibit coloboma. Loss of RPE in yap mutants is exacerbated in combination with taz (wwtr1) mutant alleles such that, when Yap and Taz are both absent, optic vesicle progenitor cells completely lose their ability to form RPE. The mechanism of Yap dependent RPE cell type determination is reliant on both nuclear localization of Yap and interaction with a Tead co-factor. In contrast to loss of Yap and Taz, overexpression of either protein within optic vesicle progenitors leads to ectopic pigmentation in a dosagedependent manner. Overall, this study identifies Yap and Taz as key early regulators of RPE genesis and provides a mechanistic framework for understanding the congenital ocular defects of Sveinsson’s chorioretinal atrophy and congenital retinal coloboma. 60 pooled eyes from 36 hpf wild type or vsx2:Gal4/dsRed:14xUAS:YapS87A embryos were pooled for one sample. Three wild type and three vsx2:Gal4/dsRed:14xUAS:YapS87A pools were analyzed for RNA.
Project description:The Hippo pathway downstream effectors, Yap and Taz, play key roles in cell proliferation and tissue growth, regulating gene expression especially via interaction with Tead transcription factors. To investigate their role in skeletal muscle stem cells, we analysed gene expression changes driven by Taz and compared these to Yap mediated changes to the transcriptome by measurement of gene expression on Affymetrix microarrays. To interrogate overlapping and unique transcriptional changes driven by these Hippo effectors, satellite cell-derived myoblasts were transduced with constitutively active TAZ S89A or YAP S127A retrovirus for 24h or 48h, with empty retrovirus as control. Triplicate microarray analyses of empty vector controls, hYAP1 S127A and TAZ S89A transgenic primary myoblasts were conducted.
Project description:The Hippo pathway is a key growth-control pathway conserved across species. The downstream effectors of the Hippo pathway YAP/TAZ are frequently activated in cancer cells by a diverse array of mechanisms to drive proliferation and survival. Based on the premise that sustained interactions between YAP/TAZ and TEADs are central to their transcriptional activities, we discovered a potent small molecule inhibitor (SMI) GNE-7883 that allosterically blocks the interactions between YAP/TAZ and all four TEAD paralogs in human cells through binding to the TEAD lipid pocket. GNE-7883 effectively reduces chromatin accessibility specifically at TEAD motifs, suppresses cell proliferation in a variety of cell line models, and achieved strong anti-tumor efficacy in vivo. Furthermore, we uncovered that GNE-7883 effectively overcomes resistance to the recently approved KRAS G12C inhibitor sotorasib in both treatment-refractory and acquired resistance cell line models, providing strong proof-of-concept of TEAD SMIs in targeting YAP/TAZ-mediated KRAS inhibitor resistance. Taken together, this work demonstrates activities of TEAD SMIs in YAP/TAZ-dependent cancers and highlights their potential broad applications in precision oncology and therapy resistance.
Project description:The two effector proteins of the Hippo signaling pathway, YAP and TAZ, play a pivotal role in the cellular homeostasis of podocytes and in the pathogenesis of focal segmental glomerulosclerosis (FSGS). We aim to unravel the unique and redundant functions of YAP and TAZ in the podocyte by identifying podocyte-specific interactors. We generated stable heat sensitive mouse podocytes (hsMPs) carrying a single copy integration of a transgenic construct expressing a flagged version of mouse Yap (3XFLAG.YAP), Taz (3XFLAG.TAZ) or Ruby (3XFLAG.RUBY) in the Rosa26 locus. To explore the interactome of YAP and TAZ in podocytes we immunoprecipitated the tagged proteins and characterized the co-immunoprecipitated protein complexes by mass spectrometry. Within the interactome analyses of the hsMPs, we identified shared and non-shared interacting proteins between YAP and TAZ. Among these identified proteins many well established interactors of YAP and TAZ were included, like proteins of the Tead family, different angiomotins or large tumor suppressor kinase 1 (Lats1). Strikingly, among the shared proteins were numerous proteins of the nuclear shuttling machinery, like importins (Ipo), exportins (Xpo), transportins (Tnpo) and nucleoporins (Nup) that form the nuclear pore complex (NPC), such as NUP107, NUP133, NUP205 and XPO5.
Project description:Uncontrolled Transforming growth factor-beta (TGFβ) signaling promotes aggressive metastatic properties in late-stage breast cancers. However, how TGFβ-mediated cues are directed to induce late-stage tumorigenic events is poorly understood, particularly given that TGFβ has clear tumor suppressing activity in other contexts. Here we demonstrate that the transcriptional regulators TAZ and YAP (TAZ/YAP), key effectors of the Hippo pathway, are necessary to promote and maintain TGFβ-induced tumorigenic phenotypes in breast cancer cells. Interactions between TAZ/YAP, TGFβ-activated SMAD2/3, and TEAD transcription factors reveal convergent roles for these factors in the nucleus. Genome-wide expression analyses indicate that TAZ/YAP, TEADs and TGFβ-induced signals coordinate a specific pro-tumorigenic transcriptional program. Importantly, genes cooperatively regulated by TAZ/YAP, TEAD, and TGFβ, such as the novel targets NEGR1 and UCA1, are necessary for maintaining tumorigenic activity in metastatic breast cancer cells. Nuclear TAZ/YAP also cooperate with TGFβ signaling to promote phenotypic and transcriptional changes in non-tumorigenic cells to overcome TGFβ repressive effects. Our work thus identifies crosstalk between nuclear TAZ/YAP and TGFβ signaling in breast cancer cells, revealing novel insight into late-stage disease-driving mechanisms. Expression profiling was conducted following the repression of the transcriptional regulators TAZ and YAP (TAZ/YAP), the TEAD family of transcription factors (TEAD1/2/3/4), or the TGFb signaling pathway (with SB-431542, an inhibitor of the TBRI recpeptor) in human MDA-MB-231-LM2 breast cancer cells treated with TGFβ1. Human MDA-MB-231-LM2-4 breast cancer cells were transfected with control siRNA, or siRNAs targeting TAZ/YAP or all four TEADs and were treated 24 hours later with 500pM TGFβ1 or 5mM SB-431542 for an additional 24 hours. Total RNA was isolated and twelve microarrays in total were performed, with each condition carried out three times on separate days. The Boston University Microarray Core generated the data using the Affymetrix Human Gene 1.0 St Array.