Project description:To search for factors regulating neuronal differentiation, we performed a genome-wide loss-of-function CRISPR/Cas9 screen in haploid human ESCs. The regulators were identified by the quantification of depletion of their mutant clones within a pooled loss-of-function library upon neuronal differentiation.
Project description:To search for host factors regulating Zika virus infection, we performed a genome-wide loss-of-function CRISPR/Cas9 screen in haploid human ESCs. The regulators were identified by the quantification of enrichment of their mutant clones within a pooled loss-of-function library upon Zika virus infection.
Project description:To search for host factors regulating SARS-COV-2 infection, we performed a genome-wide loss-of-function CRISPR/Cas9 screen in haploid human ESCs. The regulators were identified by the quantification of enrichment of their mutant clones within a pooled loss-of-function library upon SARS-COV-2 infection.
Project description:To search for factors regulating paternally imprinted genes (PEGs), we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs, and further analyzed the molecular phenotype upon perturbation of candidate PEGs regulators.
Project description:To search for factors regulating paternally imprinted genes (PEGs), we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs, and further analyzed the molecular phenotype upon perturbation of candidate PEGs regulators.
Project description:Docetaxel chemotherapy in metastatic prostate cancer offers only a modest survival benefit due to emerging resistance. To identify candidate therapeutic gene targets, we applied a murine prostate cancer orthograft model that recapitulates clinical invasive prostate cancer in a genome-wide CRISPR/Cas9 screen under docetaxel treatment pressure.
Project description:<p>Due to the paucity of patient derived models in rare cancers, identification of therapeutic targets remains challenging. We developed a patient derived model, CLF-PED-015-T, from a patient with an undifferentiated sarcoma. From this model, we performed pooled RNAi and CRISPR-Cas9 negative selection screens and integrated that with a small molecule screen. Integration of these data identified CDK4 and XPO1 as potential therapeutic targets.</p>
Project description:Genome-wide CRISPR-Cas9 knockout screen using TKOv1 sgRNA library performed in isogenic RBM10-proficient and RBM10-deficient HCC827 cells.