Project description:Engineering microbes with novel metabolic properties is a critical step for production of biofuels and biochemicals. Synthetic biology enables identification and engineering of metabolic pathways into microbes; however, knowledge of how to reroute cellular regulatory signals and metabolic flux remains lacking. Here we used network analysis of multi-omic data to dissect the mechanism of anaerobic xylose fermentation, a trait important for biochemical production from plant lignocellulose. We compared transcriptomic, proteomic, and phosphoproteomic differences across a series of strains evolved to ferment xylose under various conditions.
Project description:Engineering microbes with novel metabolic properties is a critical step for production of biofuels and biochemicals. Synthetic biology enables identification and engineering of metabolic pathways into microbes; however, knowledge of how to reroute cellular regulatory signals and metabolic flux remains lacking. Here we used network analysis of multi-omic data to dissect the mechanism of anaerobic xylose fermentation, a trait important for biochemical production from plant lignocellulose. We compared transcriptomic, proteomic, and phosphoproteomic differences across a series of strains evolved to ferment xylose under various conditions.
Project description:Xylose induced effects on metabolism and gene expression during anaerobic growth of an engineered Saccharomyces cerevisiae on mixed glucose-xylose medium were quantified. Gene expression of S. cerevisiae harbouring an XR-XDH pathway for xylose utilisation was analysed from early cultivation when mainly glucose was metabolised, to times when xylose was co-consumed in the presence of low glucose concentrations, and finally, to glucose depletion and solely xylose being consumed. Cultivations on glucose as a sole carbon source were used as a control. Genome-scale dynamic flux balance analysis models were developed and simulated to analyse the metabolic dynamics of S. cerevisiae in the cultivations. Model simulations quantitatively estimated xylose dependent dynamics of fluxes and challenges to the metabolic network utilisation. Increased relative xylose utilisation was predicted to induce two-directionality of glycolytic flux and a redox challenge already at low glucose concentrations. Xylose effects on gene expression were observed also when glucose was still abundant. Remarkably, xylose was observed to specifically delay the glucose-dependent repression of particular genes in mixed glucose-xylose cultures compared to glucose cultures. The delay occurred during similar metabolic flux activities in the both cultures. Xylose is abundantly present together with glucose in lignocellulosic streams that would be available for the valorisation to biochemicals or biofuels. Yeast S. cerevisiae has superior characteristics for a host of the bioconversion except that it strongly prefers glucose and the co-consumption of xylose is yet a challenge. Further, since xylose is not a natural substrate of S. cerevisiae, the regulatory response it induces in an engineered yeast strain cannot be expected to have evolved for its utilisation. Dynamic cultivation experiments on mixed glucose-xylose medium having glucose cultures as control integrated with mathematical modelling allowed to resolve specific effects of xylose on the gene expression and metabolism of engineered S. cerevisiae in the presence of varying amounts of glucose.
Project description:In the present study transcriptome and proteome of recombinant, xylose-utilising S. cerevisiae grown in aerobic batch cultures on xylose were compared with glucose-grown cells both in glucose repressed and derepressed states. The aim was to study at genome-wide level how signalling and carbon catabolite repression differed in cells grown on either glucose or xylose. The more detailed knowledge about is xylose sensed as a fermentable carbon source, capable of catabolite repression like glucose, or is it rather recognised as a non-fermentable carbon source is important in achieving understanding for further engineering this yeast for more efficient anaerobic fermentation of xylose.
Project description:All organisms have evolved elaborate physiological pathways that regulate growth, proliferation, metabolism, and stress response. These pathways must be properly coordinated to elicit the appropriate response to an ever-changing environment. While individual pathways have been well studied in a variety of model systems, there remains much to uncover about how they are integrated to produce global changes in a cell. Past work from our lab, focused on engineering the budding yeast Saccharomyces cerevisiae for fermentation of the non-native pentose sugar xylose, discovered that hyperactivation of the RAS/Protein Kinase A (PKA) pathway was needed for rapid anaerobic xylose fermentation. Interestingly, the mechanism of PKA hyperactivation has a dramatic impact on growth and metabolism on xylose; deletion of the RAS inhibitor IRA2 permits rapid growth and fermentation, while deletion of the PKA regulatory subunit BCY1 allows for fermentation without growth on xylose. To understand how a single deletion in the PKA pathway can decouple growth and metabolism, we performed transcriptomic analysis of these strains, predicting that altered PKA activity would impact global gene expression and identify pathways important for growth and metabolism coordination. Notably, we found enriched differential expression of lipid metabolism genes, targets of the phospholipid biosynthetic gene transcription factor Ino4, and genes containing the Aft1/2 consensus motif. These results suggested that dysfunctional lipid homeostasis may be responsible for decoupling growth and metabolism in the bcy1∆ strain. In parallel work, we also directly evolved the bcy1∆ strain to grow anaerobically on xylose and found point mutations in TPK1, OPI1, RIM8, and TOA1 permitted growth. Interestingly, Opi1 is the inhibitor of Ino4, further supporting the role of lipid homeostasis in growth and metabolism coordination. This work shows that a single genetic change can have dramatic impacts on multiple aspects of cellular physiology.
Project description:These data are associated with a larger project to understand grown and metabolism of yeast on a xylose media under anaerobic conditions. Strains delta-ira2, delta-bcy1, and delta-ira2bcy1 are being evaluated for differences in lipid abundances on normal (YPD) and xylose (YPX) media.