Project description:To study whether and how soil nitrogen conditions affect the ecological effects of long-term elevated CO2 on microbial community and soil ecoprocess, here we investigated soil microbial community in a grassland ecosystem subjected to ambient CO2 (aCO2, 368 ppm), elevated CO2 (eCO2, 560 ppm), ambient nitrogen deposition (aN) or elevated nitrogen deposition (eN) treatments for a decade. Under the aN condition, a majority of microbial function genes, as measured by GeoChip 4.0, were increased in relative abundance or remained unchanged by eCO2. Under the eN condition, most of functional genes associated with carbon, nitrogen and sulfur cycling, energy processes, organic remediation and stress responses were decreased or remained unchanged by eCO2, while genes associated with antibiotics and metal resistance were increased. The eCO2 effects on fungi and archaea were largely similar under both nitrogen conditions, but differed substantially for bacteria. Coupling of microbial carbon or nitrogen cycling genes, represented by positive percentage and density of gene interaction in association networks, was higher under the aN condition. In accordance, changes of soil CO2 flux, net N mineralization, ammonification and nitrification was higher under the aN condition. Collectively, these results demonstrated that eCO2 effects are contingent on nitrogen conditions, underscoring the difficulty toward predictive modeling of soil ecosystem and ecoprocesses under future climate scenarios and necessitating more detailed studies.
Project description:To study whether and how soil nitrogen conditions affect the ecological effects of long-term elevated CO2 on microbial community and soil ecoprocess, here we investigated soil microbial community in a grassland ecosystem subjected to ambient CO2 (aCO2, 368 ppm), elevated CO2 (eCO2, 560 ppm), ambient nitrogen deposition (aN) or elevated nitrogen deposition (eN) treatments for a decade. Under the aN condition, a majority of microbial function genes, as measured by GeoChip 4.0, were increased in relative abundance or remained unchanged by eCO2. Under the eN condition, most of functional genes associated with carbon, nitrogen and sulfur cycling, energy processes, organic remediation and stress responses were decreased or remained unchanged by eCO2, while genes associated with antibiotics and metal resistance were increased. The eCO2 effects on fungi and archaea were largely similar under both nitrogen conditions, but differed substantially for bacteria. Coupling of microbial carbon or nitrogen cycling genes, represented by positive percentage and density of gene interaction in association networks, was higher under the aN condition. In accordance, changes of soil CO2 flux, net N mineralization, ammonification and nitrification was higher under the aN condition. Collectively, these results demonstrated that eCO2 effects are contingent on nitrogen conditions, underscoring the difficulty toward predictive modeling of soil ecosystem and ecoprocesses under future climate scenarios and necessitating more detailed studies. Fourty eight samples were collected for four different carbon and nitrogen treatment levels (aCaN,eCaN,aCeN and eCeN) ; Twelve replicates in every elevation
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling.
Project description:To study long-term elevated CO2 and enriched N deposition interactive effects on microbial community and soil ecoprocess, here we investigated soil microbial community in a grassland ecosystem subjected to ambient CO2 (aCO2, 368 ppm), elevated CO2 (eCO2, 560 ppm), ambient nitrogen deposition (aN) or elevated nitrogen deposition (eN) treatments for a decade. There exist antagonistic CO2×N interactions on microbial functional genes associated with C, N, P S cycling processes. More strong antagonistic CO2×N interactions are observed on C degradation genes than other genes. Remarkably antagonistic CO2×N interactions on soil microbial communities could enhance soil C accumulation.
Project description:The response of soil microbial community to climate warming through both function shift and composition reorganization may profoundly influence global nutrient cycles, leading to potential significant carbon release from the terrain to the atmosphere. Despite the observed carbon flux change in northern permafrost, it remains unclear how soil microbial community contributes to this ecosystem alteration. Here, we applied microarray-based GeoChip 4.0 to investigate the functional and compositional response of subsurface (15~25cm) soil microbial community under about one year’s artificial heating (+2°C) in the Carbon in Permafrost Experimental Heating Research site on Alaska’s moist acidic tundra. Statistical analyses of GeoChip signal intensities showed significant microbial function shift in AK samples. Detrended correspondence analysis and dissimilarity tests (MRPP and ANOSIM) indicated significant functional structure difference between the warmed and the control communities. ANOVA revealed that 60% of the 70 detected individual genes in carbon, nitrogen, phosphorous and sulfur cyclings were substantially increased (p<0.05) by heating. 18 out of 33 detected carbon degradation genes were more abundant in warming samples in AK site, regardless of the discrepancy of labile or recalcitrant C, indicating a high temperature sensitivity of carbon degradation genes in rich carbon pool environment. These results demonstrated a rapid response of northern permafrost soil microbial community to warming. Considering the large carbon storage in northern permafrost region, microbial activity in this region may cause dramatic positive feedback to climate change, which is important and necessary to be integrated into climate change models.
Project description:Understanding the mechanisms underlying the establishment of invasive plants is critical in community ecology. According to a widely accepted theory, plant-soil-microbe interactions mediate the effects of invasive plants on native species, thereby affecting invasion success. However, the roles and molecular mechanisms associated with such microbes remain elusive. Using high throughput sequencing and a functional gene microarray, we found that soil taxonomic and functional microbial communities in plots dominated by Ageratina adenophora developed to benefit the invasive plant. There were increases in nitrogen-fixing bacteria and labile carbon degraders, as well as soil-borne pathogens in bulk soil, which potentially suppressed native plant growth. Meanwhile, there was an increase of microbial antagonism in the A. adenophora rhizosphere, which could inhibit pathogenicity against plant invader. These results suggest that the invasive plant A. adenophora establishes a self-reinforcing soil environment by changing the soil microbial community. It could be defined as a ‘bodyguard/mercenary army’ strategy for invasive plants, which has important insights for the mitigation of plant invasion.