Project description:Quorum sensing is a communication strategy that bacteria use to collectively alter gene expression in response to cell density. Pathogens use quorum sensing systems to control activities vital to infection, such as the production of virulence factors and biofilm formation. The Pseudomonas virulence factor (pvf) gene cluster encodes a quorum sensing system (Pvf) that is present in over 500 strains of proteobacteria, including strains that infect a variety of plant and human hosts. We have shown that the Pvf quorum sensing system regulates the production of secreted proteins and small molecules in the insect pathogen Pseudomonas entomophila L48. Here, we identified genes that are likely regulated by Pvf using the model strain P. entomophila L48 which does not contain other known quorum sensing systems. Pvf regulated genes were identified through comparing the transcriptomes of wildtype P. entomophila and a pvf deletion mutant (ΔpvfA-D). We found that deletion of pvfA-D affected the expression of approximately 300 genes involved in virulence, the type VI secretion system, siderophore transport, and branched chain amino acid biosynthesis. Additionally, we identified seven putative biosynthetic gene clusters whose expression are reduced in ΔpvfA-D. Our results indicate that Pvf controls multiple virulence mechanisms in P. entomophila L48. Characterizing genes regulated by Pvf will aid understanding of host-pathogen interactions and development of anti-virulence strategies against P. entomophila and other pvf-containing strains.
Project description:To characterize the molecular basis of cytotoxicity of different Pseudomonas species and strains, we analyzed the protein content of secretomes of three P. chlororaphis strains (CIP63, CIP75 and the reference strain PA23) and of six P. entomophila strains (L48 WT, or deleted for various virulence factors: the global activator GacA, the pore-forming toxin Mnl, the pore-forming toxin ExlA, and double mutants for these genes).