Project description:Black cumin (Nigella sativa L.) is known to possess a wide variety of antimicrobial peptides belonging to different structural families. Three novel antimicrobial peptides have been isolated from black cumin seeds. Two of them were attributed as members of the non-specific lipid transfer proteins family and one - as a defensin. We have made an attempt of using proteomic approach for novel antimicrobial peptides search in N. sativa seeds as well. The use of well established approach that includes extraction and fractionation stages remains relevant even in case of novel peptides search because the lacking of N. sativa genome data. Novel peptides demonstrate a spectrum of antimicrobial activity against plant pathogenic organisms that may cause economically important crop diseases. These results obtained allow considering these molecules as candidates to be applied in "next-generation" biopesticides development for agriculture use.
Project description:Nigella species are widely used to cure various ailments. Their health benefits, particularly from the seed oils, could be attributed to the presence of a variety of bioactive components. Roasting is a critical process that has historically been used to facilitate oil extraction and enhance flavor; it may also alter the chemical composition and biological properties of the Nigella seed. The aim of this study was to investigate the effect of the roasting process on the composition of the bioactive components and the biological activities of Nigella arvensis and Nigella sativa seed extracts. Our preliminary study showed that seeds roasted at 50 °C exhibited potent antimicrobial activities; therefore, this temperature was selected for roasting Nigella seeds. For extraction, raw and roasted seed samples were macerated in methanol. The antimicrobial activities against Streptococcus agalactiae, Streptococcus epidermidis, Streptococcus pyogenes, Candida albicans, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, and Klebsiella oxytoca were determined by measuring the diameter of the zone of inhibition. The cell viability of extracts was tested in a colon carcinoma cell line, HCT-116, by using a microculture tetrazolium technique (MTT) assay. Amino acids were extracted and quantified using an automatic amino acid analyzer. Then, gas chromatography-mass spectrometry (GC-MS) analysis was performed to identify the chemical constituents and fatty acids. As a result, the extracts of raw and roasted seeds in both Nigella species showed strong inhibition against Klebsiella oxytoca, and the raw seed extract of N.arvensis demonstrated moderate inhibition against S. pyogenes. The findings of the MTT assay indicated that all the extracts significantly decreased cancer cell viability. Moreover, N. sativa species possessed higher contents of the measured amino acids, except tyrosine, cystine, and methionine. The GC-MS analysis of extracts showed the presence of 22 and 13 compounds in raw and roasted N. arvensis, respectively, and 9 and 11 compounds in raw and roasted N. sativa, respectively. However, heat treatment decreased the detectable components to 13 compounds in roasted N. arvensis and increased them in roasted N. sativa. These findings indicate that N. arvensis and N. sativa could be potential sources of anticancer and antimicrobials, where the bioactive compounds play a pivotal role as functional components.
Project description:OBJECTIVE:Nigella sativa (N. sativa) has several pharmacological actions which include antioxidant, antidiabetic, anticancer, antitussive, immunomodulator, analgesic, antimicrobial, anti-inflammatory, spasmolytic, and bronchodilator. The purpose of this study is to measure the effectivity of N. sativa ethanol extract as anti-inflammation on peritoneal Wistar rat mast cells. The laboratory experiment was used to investigate the effectivity of N. sativa as an anti-inflammatory on mast cells. Six groups of mast cells were stimulated by C 48/80 to release histamine. Group 1 were without N. sativa, while group 2, 3, 4, 5, and 6 were given N. sativa with concentrations of 0.1 mg/ml, 0.2 mg/ml, 0.3 mg/ml, 0.4 mg/ml and 0.5 mg/ml, respectively. Histamine concentration was measured by high-performance liquid chromatography-fluorometry. RESULT:The study showed that N. sativa ethanol extract effectively inhibit histamine release from peritoneal Wistar rat mast cells proportionally to its concentration. N. sativa is effective as an anti-inflammation on mast cells by inhibition of histamine release and has no toxic effect on mast cell. N. sativa could be considered as a potential therapy for asthma therapy and prevention.
Project description:This study aimed to evaluate the protective role of Nigella sativa oil against the adverse effects of tartrazine on male rats. 18 albino rats were divided randomly into four groups (n?=?6). The first (G1) is the negative control, the second group (G2) is the positive control received 10?mg/kg b.w. tartrazine in the diet and the third (G3) received the same dose of tartrazine as in G2 and co-treated with Nigella sativa oil for 8 weeks. Tartrazine decreased total protein, antioxidants and high density lipoproteins, whereas increased liver enzyme, kidney function parameters, total cholesterol, triglycerides, low density lipoproteins and lipid peroxidation in the positive control group. In addition, it caused pathological changes in the tissues of liver, kidney, testes and stomach. Treating tartrazine supplemented rats of G3 with Nigella sativa oil for 8 weeks significantly improved all biochemical parameters and restored the tissues of kidney, stomach, testes and liver to normal. It could be concluded that N. sativa oil succeeded in protecting male rats against the adverse conditions resulted from tartrazine administration.
Project description:BackgroundOxidized low density lipoprotein plays an important role in development of foam cells in atherosclerosis. The study was focused on regulation of primary human monocyte growth and CD11b expression in presence of Nigella sativa oil.MethodsPrimary human monocytes were isolated from whole blood and grown at 37°C and 5% CO₂ saturation for five days prior to treatment with Nigella sativa oil. The cells were plated and washed before treatment with ox-LDL (10 μg/ml) as positive control and combined treatment of ox-LDL (10 μg/ml) and (140 ng/ml) Nigella sativa oil. The growth progression was monitored every 24 hours for 3 days.ResultsMacrophages showed reduced growth in comparison to monocytes 24 hours after treatment with Nigella sativa oil. The mean cell diameter was significantly different between untreated and treated condition in monocytes and macrophages (p < 0.001). Similarly, intracellular lipid accumulation was hindered in combined treatment with Nigella sativa oil. This was further supported by cell surface expression analysis, where CD11b was markedly reduced in cells treated with combination oxLDL and Nigella sativa oil compared to oxLDL alone. More cells differentiated into macrophage-like cells when monocytes were supplemented with oxidized LDL alone.ConclusionsThe finding provides preliminary evidence on regulation of cell growth and differentiation in monocyte and monocyte-derived macrophages by Nigella sativa oil. Further investigations need to be conducted to explain its mechanism in human monocyte.
| S-EPMC3280944 | biostudies-literature
Project description:Nigella bucharica, Nigella sativa L. and Nigella damascena L. low coverage genome sequencing