Project description:The goal of this study was to examine chromosome topology in Drosophila larval eye and antennal discs by identifying topologically associating domains (TADs) across the genome. TADs were compared between the eye and antennal disc to determine whether they contribute to cell-type-specific homologous pairing and transvection.
Project description:We report the proteome composition of the Drosophila eye – a compound organ that is highly enriched in membrane proteins. The fly eye is a popular model to study the physiology of vision by means of genetic, pharmacological, and dietary interference.While the eye transcriptome and development-related changes of gene expression profiles have been extensively studied, little is known about the eye proteome.we employed GeLC-MS/MS to identify and rank the abundances of 3516 eye proteins. Moreover, we applied our MS Western method to determine the absolute (molar) abundances of a related set of proteins that are important for photoreceptor structure (including maintenance) and function (phototransduction). Altogether, we provide a comprehensive and expandable proteomics resource that will be valuable for a variety of studies of ocular biochemistry, physiology, and development.
Project description:The goal of this study was to examine RNA expression levels in the Drosophila larval eye and antennal discs and determine whether higher levels of transcription were correlated with the ability of transgenes to drive pairing with their homologous endogenous loci between chromosomes. Additionally, RNA expression levels were compared between the eye and antennal discs to determine whether increased insulator protein expression contributed to increased pairing in the eye disc.
Project description:The innate immune response of insects relies on several humoral and cellular mechanisms that require the activation of circulating proteases in the hemolymph to be functional. Here, we analyzed the gelatinase and caseinase activities of Drosophila larval hemolymph under normal and pathogenic conditions (bacterial lipopolysaccharides or endoparasitoid Leptopilina boulardi) using in gel zymography. Gelatinase activity was more intense than caseinase activity and qualitative and quantitative variations were observed between D. melanogaster strains and Drosophila species. Mass spectrometry identified a large number of serine proteases in gel bands equivalent to the major gelatinase and caseinase bands and of these, the most abundant and redundant were Tequila and members of the Jonah and Trypsin protease families. However, hemolymph from Tequila null mutant larvae showed no obvious changes in zymographic bands. Nor did we observe any significant changes in hemolymph gelatinases activity 24 h after injection of bacterial lipopolysaccharides or after oviposition by endoparasitoid wasps. These data confirmed that many serine proteases are present in Drosophila larval hemolymph but those with gelatinase and caseinase activity may not change drastically during the immune response.
Project description:Transcriptomes of Drosophila melanogaster eye-antennal imaginal discs at three sequential larval stages: late 2nd instar (72h after egg laying (AEL)), mid 3rd instar (96h AEL) and late 3rd instar (120h AEL).
Project description:Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes. Keywords: other