Project description:Gain-of-function mutations in exon 3 of beta-catenin (CTNNB1) are specific for Wilms' tumors that have lost WT1, but 50% of WT1-mutant cases lack such "hot spot" mutations. To ask whether stabilization of beta-catenin might be essential after WT1 loss, and to identify downstream target genes, we compared expression profiles in WT1-mutant versus WT1 wild-type Wilms' tumors. Supervised and nonsupervised hierarchical clustering of the expression data separated these two classes of Wilms' tumor. The WT1-mutant tumors overexpressed genes encoding myogenic and other transcription factors (MOX2, LBX1, SIM2), signaling molecules (TGFB2, FST, BMP2A), extracellular Wnt inhibitors (WIF1, SFRP4), and known beta-catenin/TCF targets (FST, CSPG2, CMYC). Beta-Catenin/TCF target genes were overexpressed in the WT1-mutant tumors even in the absence of CTNNB1 exon 3 mutations, and complete sequencing revealed gain-of-function mutations elsewhere in the CTNNB1 gene in some of these tumors, increasing the overall mutation frequency to 75%. Lastly, we identified and validated a novel direct beta-catenin target gene, GAD1, among the WT1-mutant signature genes. These data highlight two molecular classes of Wilms' tumor, and indicate strong selection for stabilization of beta-catenin in the WT1-mutant class. Beta-Catenin stabilization can initiate tumorigenesis in other systems, and this mechanism is likely critical in tumor formation after loss of WT1. Experiment Overall Design: Identification of WNT/Beta-Catenin or WT1 target genes. 39 individual samples.
Project description:Gain-of-function mutations in exon 3 of beta-catenin (CTNNB1) are specific for Wilms' tumors that have lost WT1, but 50% of WT1-mutant cases lack such "hot spot" mutations. To ask whether stabilization of beta-catenin might be essential after WT1 loss, and to identify downstream target genes, we compared expression profiles in WT1-mutant versus WT1 wild-type Wilms' tumors. Supervised and nonsupervised hierarchical clustering of the expression data separated these two classes of Wilms' tumor. The WT1-mutant tumors overexpressed genes encoding myogenic and other transcription factors (MOX2, LBX1, SIM2), signaling molecules (TGFB2, FST, BMP2A), extracellular Wnt inhibitors (WIF1, SFRP4), and known beta-catenin/TCF targets (FST, CSPG2, CMYC). Beta-Catenin/TCF target genes were overexpressed in the WT1-mutant tumors even in the absence of CTNNB1 exon 3 mutations, and complete sequencing revealed gain-of-function mutations elsewhere in the CTNNB1 gene in some of these tumors, increasing the overall mutation frequency to 75%. Lastly, we identified and validated a novel direct beta-catenin target gene, GAD1, among the WT1-mutant signature genes. These data highlight two molecular classes of Wilms' tumor, and indicate strong selection for stabilization of beta-catenin in the WT1-mutant class. Beta-Catenin stabilization can initiate tumorigenesis in other systems, and this mechanism is likely critical in tumor formation after loss of WT1. Keywords: single channel
Project description:Oncogenic stabilizing mutations in the beta-catenin gene CTNNB1 are common in one class of human Wilms tumors. To model these tumors, we crossed mice carrying an inducible Cre recombinase (Rosa26-CreERT2) with a conditional gain-of-function beta-catenin allele (Ctnnb1Ex3flox). We obtained kidneys at embryonic day 13.5 and placed them in organ culture with tamoxifen. Multiple small tumors formed in the Ctnnb1∆Ex3 kidneys while the control kidneys developed normally. Immunostaining for Sall1, a marker of condensing metanephric mesenchyme, indicated that the tumors arise from this tissue compartment, analogous to the origin of human Wilms tumors. Expression profiling identified a set of induced genes overlapping with those up-regulated in human Wilms tumors with CTNNB1 mutations, including genes encoding feedback inhibitors of Wnt/beta-catenin signaling, the epithelial-mesenchymal transition (EMT) inducers, and the transcription factor E2-2 (ITF2/TCF4). A conditional deletion of E2-2 showed that this gene is important for growth of the nephroblastomas, in part via promoting an epithelial to mesenchymal transition downstream of beta-catenin. Given these cross-species validations, and genetic proof of the oncogenic function of a key downstream target gene, we expect that this rapid and efficient organ culture model will be useful for further studies to dissect and inhibit oncogenic Wnt/beta-catenin signaling.
Project description:Oncogenic stabilizing mutations in the beta-catenin gene CTNNB1 are common in one class of human Wilms tumors. To model these tumors, we crossed mice carrying an inducible Cre recombinase (Rosa26-CreERT2) with a conditional gain-of-function beta-catenin allele (Ctnnb1Ex3flox). We obtained kidneys at embryonic day 13.5 and placed them in organ culture with tamoxifen. Multiple small tumors formed in the Ctnnb1∆Ex3 kidneys while the control kidneys developed normally. Immunostaining for Sall1, a marker of condensing metanephric mesenchyme, indicated that the tumors arise from this tissue compartment, analogous to the origin of human Wilms tumors. Expression profiling identified a set of induced genes overlapping with those up-regulated in human Wilms tumors with CTNNB1 mutations, including genes encoding feedback inhibitors of Wnt/beta-catenin signaling, the epithelial-mesenchymal transition (EMT) inducers, and the transcription factor E2-2 (ITF2/TCF4). A conditional deletion of E2-2 showed that this gene is important for growth of the nephroblastomas, in part via promoting an epithelial to mesenchymal transition downstream of beta-catenin. Given these cross-species validations, and genetic proof of the oncogenic function of a key downstream target gene, we expect that this rapid and efficient organ culture model will be useful for further studies to dissect and inhibit oncogenic Wnt/beta-catenin signaling.
Project description:Oncogenic stabilizing mutations in the beta-catenin gene CTNNB1 are common in one class of human Wilms tumors. To model these tumors, we crossed mice carrying an inducible Cre recombinase (Rosa26-CreERT2) with a conditional gain-of-function beta-catenin allele (Ctnnb1Ex3flox). We obtained kidneys at embryonic day 13.5 and placed them in organ culture with tamoxifen. Multiple small tumors formed in the Ctnnb1∆Ex3 kidneys while the control kidneys developed normally. Immunostaining for Sall1, a marker of condensing metanephric mesenchyme, indicated that the tumors arise from this tissue compartment, analogous to the origin of human Wilms tumors. Expression profiling identified a set of induced genes overlapping with those up-regulated in human Wilms tumors with CTNNB1 mutations, including genes encoding feedback inhibitors of Wnt/beta-catenin signaling, the epithelial-mesenchymal transition (EMT) inducers, and the transcription factor E2-2 (ITF2/TCF4). A conditional deletion of E2-2 showed that this gene is important for growth of the nephroblastomas, in part via promoting an epithelial to mesenchymal transition downstream of beta-catenin. Given these cross-species validations, and genetic proof of the oncogenic function of a key downstream target gene, we expect that this rapid and efficient organ culture model will be useful for further studies to dissect and inhibit oncogenic Wnt/beta-catenin signaling.
Project description:Wilms tumors are genetically heterogeneous kidney tumors whose cells of origin are unknown. Tumors with WT1 mutations and concomitant loss of the wild-type allele represent a distinct subgroup, frequently associated with mutations in CTNNB1. Here we describe the establishment and characterization of long-term cell cultures derived from five individual Wilms tumors with WT1 mutations. Three of these tumor cell lines also had CTNNB1 mutations and an activated canonical Wnt signaling pathway as measured by β-catenin/TCF transcriptional activity. Four of the five Wilms cell lines had a stable normal karyotype for at least 25 passages, and four lines showed loss of heterozygosity of chromosome 11p due to mitotic recombination in 11p11. Gene expression profiling revealed that the Wilms tumor cell lines are highly similar to human mesenchymal stem cells (MSCs) and FACS analysis demonstrated expression of MSC-specific surface proteins CD105, CD90 and CD73. The stem cell like nature of the Wilms tumor cells is further supported by their adipogenic, chondrogenic, osteogenic and myogenic differentiation potentials. By generating multipotent mesenchymal precursors from paraxial mesoderm (PAM) in tissue culture using embryonal stem cells, gene expression profiles of PAM and MSCs were described. Using these published gene sets we found coexpression of a large number of genes in Wilms tumor cell lines, PAM and MSCs. Lineage plasticity is indicated by the simultaneous expression of genes from the mesendodermal and neuroectodermal lineages. We conclude that Wilms tumors with WT1 mutations have specific traits of PAM, which is the source of kidney stromal cells.
Project description:Medulloblastoma is the most frequent malignant pediatric brain tumor. Considerable efforts are dedicated to identify markers that help to refine treatment strategies. The activation of the Wnt/beta-catenin pathway occurs in 10-15% of medulloblastomas and has been recently described as a marker for favorable patient outcome. We report a series of 72 pediatric medulloblastomas evaluated for beta-catenin immunostaining, CTNNB1 mutations, and studied by comparative genomic hybridization. Gene expression profiles were also available in a subset of 40 cases. Immunostaining of beta-catenin showed extensive nuclear staining (>50% of the tumor cells) in 6 cases and focal nuclear staining (<10% of cells) in 3 cases. The other cases exhibited either a signal strictly limited to the cytoplasm (58 cases) or were negative (5 cases). CTNNB1 mutations were detected in all beta-catenin extensively nucleopositive cases. The expression profiles of these cases documented a strong activation of the Wnt/beta-catenin pathway. Remarkably, 5 out of these 6 tumors showed a complete loss of chromosome 6. In contrast, cases with focal nuclear beta-catenin staining, as well as tumors with negative or cytoplasmic staining, never demonstrated CTNNB1 mutation, Wnt/beta-catenin pathway activation or chromosome 6 loss. Patients with extensive nuclear staining were significantly older at diagnosis and were in continuous complete remission after a mean follow-up of 75.7 months (range 27.5-121.2) from diagnosis. All three patients with a focal nuclear staining of beta-catenin died within 36 months from diagnosis. Altogether, these data confirm and extend previous observations that CTNNB1-mutated tumors represent a distinct molecular subgroup of medulloblastomas with favorable outcome, indicating that therapy de-escalation should be considered. Yet, international consensus on the definition criteria of this distinct medulloblastoma subgroup should be achieved. A series of 72 pediatric medulloblastoma tumors has been studied at the genomic level (array-CGH), screened for CTNNB1 mutations and beta-catenin expression (immunohistochemistry). A subset of 40 tumor samples has been analyzed at the RNA expression level (Affymetrix HG U133 Plus 2.0). Correlations between the genomic data, the expression data, the mutational screening, the pathological classification and clinical data is presented in the study. note: aCGH data not submitted to GEO
Project description:Up to 41% of hepatocellular carcinomas (HCCs) result from activating mutations in the CTNNB1 gene encoding β-catenin. β-catenin has dual cellular functions as a component of the Wnt signaling pathway and adherens junctions. HCC-associated CTNNB1 mutations stabilize the β-catenin protein, leading to nuclear and/or cytoplasmic localization of β-catenin and downstream activation of Wnt target genes. In patient HCC samples, β-catenin nuclear and cytoplasmic localization are typically patchy, even among HCC with highly active CTNNB1 mutations. The functional and clinical relevance of this heterogeneity in β-catenin activation are not well understood. To define mechanisms of β-catenin-driven HCC initiation, we generated a Cre-lox system that enabled switching on activated β-catenin in 1) a small number of hepatocytes in early development; or 2) the majority of hepatocytes in later development or adulthood. We discovered that switching on activated β-catenin in a subset of larval hepatocytes was sufficient to drive HCC initiation. To determine the role of Wnt/β-catenin signaling heterogeneity later in hepatocarcinogenesis, we performed RNA-seq analysis of zebrafish β-catenin-driven HCC. Ingenuity Pathway Analysis of differentially expressed genes in the Cre-lox HCC model revealed that “Cancer” and “Liver Tumor” categories were significantly altered, indicating transcriptional similarities with human HCC and other vertebrate HCC models. At the single-cell level, 2.9% to 15.2% of hepatocytes from zebrafish β-catenin-driven HCC expressed two or more of the Wnt target genes axin2, mtor, glula, myca, and wif1, indicating focal activation of Wnt signaling in established tumors. Thus, heterogeneous β-catenin activation drives HCC initiation and persists throughout hepatocarcinogenesis.
Project description:Up to 41% of hepatocellular carcinomas (HCCs) result from activating mutations in the CTNNB1 gene encoding β-catenin. β-catenin has dual cellular functions as a component of the Wnt signaling pathway and adherens junctions. HCC-associated CTNNB1 mutations stabilize the β-catenin protein, leading to nuclear and/or cytoplasmic localization of β-catenin and downstream activation of Wnt target genes. In patient HCC samples, β-catenin nuclear and cytoplasmic localization are typically patchy, even among HCC with highly active CTNNB1 mutations. The functional and clinical relevance of this heterogeneity in β-catenin activation are not well understood. To define mechanisms of β-catenin-driven HCC initiation, we generated a Cre-lox system that enabled switching on activated β-catenin in 1) a small number of hepatocytes in early development; or 2) the majority of hepatocytes in later development or adulthood. We discovered that switching on activated β-catenin in a subset of larval hepatocytes was sufficient to drive HCC initiation. To determine the role of Wnt/β-catenin signaling heterogeneity later in hepatocarcinogenesis, we performed RNA-seq analysis of zebrafish β-catenin-driven HCC. Ingenuity Pathway Analysis of differentially expressed genes in the Cre-lox HCC model revealed that “Cancer” and “Liver Tumor” categories were significantly altered, indicating transcriptional similarities with human HCC and other vertebrate HCC models. At the single-cell level, 2.9% to 15.2% of hepatocytes from zebrafish β-catenin-driven HCC expressed two or more of the Wnt target genes axin2, mtor, glula, myca, and wif1, indicating focal activation of Wnt signaling in established tumors. Thus, heterogeneous β-catenin activation drives HCC initiation and persists throughout hepatocarcinogenesis.
Project description:Mutations of β-catenin gene (CTNNB1) are frequent in adrenocortical adenomas (AA) and carcinomas (ACC). However, the target genes of CTNNB1 have not yet been identified in adrenocortical tumors. Our objective was to identify genes de-regulated in adrenocortical tumors harbouring CTNNB1 genetic alterations. We compared gene expression profiles of AA with (n: 3) and without (n: 4) CTNNB1 mutations using Affymetrix arrays.