Proteomics

Dataset Information

0

C.auto_3gas_absquant: Spike-in SIL-protein stock absolute quantification


ABSTRACT: Microbes that can recycle one-carbon (C1) greenhouse gases into fuels and chemicals are vital for the biosustainability of future industries. Acetogens are the most efficient known microbes for fixing carbon oxides CO2 and CO. Understanding proteome allocation is important for metabolic engineering as it dictates metabolic fitness. Here, we use absolute proteomics to quantify intracellular concentrations for >1,000 proteins in the model-acetogen Clostridium autoethanogenum grown on three gas mixtures. We detect prioritisation of proteome allocation for C1 fixation and significant expression of proteins involved in the production of acetate and ethanol as well as proteins with unclear functions. The data also revealed which isoenzymes are important. Integration of proteomic and metabolic flux data demonstrated that enzymes catalyse high fluxes with high concentrations and high in vivo catalytic rates. We show that flux throughput was dominantly controlled through enzyme catalytic rates rather than concentrations. Our work serves as a reference dataset and advances systems-level understanding and engineering of acetogens.

ORGANISM(S): Clostridium Autoethanogenum

SUBMITTER: Kaspar Valgepea  

PROVIDER: PXD025760 | panorama | Tue Mar 22 00:00:00 GMT 2022

REPOSITORIES: PanoramaPublic

Similar Datasets

2022-05-22 | PXD025732 | Pride
2011-01-11 | E-GEOD-26536 | biostudies-arrayexpress
2021-04-06 | GSE139983 | GEO
2012-10-30 | GSE37621 | GEO
2024-03-28 | GSE249345 | GEO
2008-06-16 | E-GEOD-8895 | biostudies-arrayexpress
2012-10-30 | E-GEOD-37621 | biostudies-arrayexpress
2017-05-22 | GSE90792 | GEO
2020-06-01 | GSE144480 | GEO
2011-01-11 | GSE26536 | GEO