Project description:Rotavirus is the most common cause of severe diarrhea in infants and children worldwide and is responsible for about 215,000 deaths annually. Over 85% of these deaths originate in low-income/developing countries in Asia and Africa. Therefore, it is necessary to explore the development of vaccines that avoid the use of "living" viruses and furthermore, vaccines that have viral antigens capable of generating powerful heterotypic responses. Our strategy is based on the expression of the fusion of the anti-DEC205 single-chain variable fragment (scFv) coupled by an OLLAS tag to a viral protein (VP6) of Rotavirus in Nicotiana plants. It was possible to express transiently in N. benthamiana and N. sylvestris a recombinant protein consisting of the single chain variable fragment linked by an OLLAS tag to the VP6 protein. The presence of the recombinant protein, which had a molecular weight of approximately 75 kDa, was confirmed by immunodetection, in both plant species and in both cellular compartments (cytoplasm and apoplast) where it was expressed. In addition, the recombinant protein was modeled, and it was observed that some epitopes of interest are exposed on the surface, which could favor their immunogenic response.
Project description:Correct subcellular targeting is crucial for protein function. Protein location can be visualized in vivo by fusion to a fluorescent protein (FP). Nevertheless, despite intense engineering efforts, most FPs are dim or completely quenched at low pH (<6). This is particularly problematic for the study of proteins targeted to acidic compartments such as vacuoles (pH ~ 3-6) or plant cell walls (pH ~ 3.5-8.3). Plant cell walls play important roles (e.g. structural/protective role, control of growth/morphogenesis), are diverse in structure and function, and are highly dynamic (e.g. during cell growth, in response to biotic/abiotic stresses). To study and engineer plant cell walls, it is therefore critical to identify robust tools which can be used to locate proteins expressed in the apoplast. Here we used a transient expression assay in Nicotiana benthamiana leaves to test a range of FPs in vivo, and determined which ones retained strong fluorescence in the acidic environment of the apoplast. We selected 10 fluorescent proteins with a range of in vitro properties; two historical FPs and eight FPs with in vitro properties suggesting lower pH sensitivity or improved brightness, some of which had never been tested in plants prior to our study. We targeted each FP to the cytosol or the apoplast and compared the fluorescence in both compartments, before testing the in vivo pH sensitivity of FPs across a pH 8-4 gradient. Our results suggest that mTurquoise2, mNeonGreen, and mCherry are suited to tracking proteins in the apoplast under dynamic pH conditions. These fluorescent proteins may also be useful in other acidic compartments such as vacuoles.
Project description:Overexpressing novel antimicrobial peptides (AMPs) in plants is a promising approach for crop disease resistance engineering. However, the in planta stability and subcellular localization of each AMP should be validated for the respective plant species, which can be challenging due to the small sizes and extreme pI ranges of AMPs which limits the utility of standard proteomic gel-based methods. Despite recent advances in quantitative shotgun proteomics, its potential for AMP analysis has not been utilized and high throughput methods are still lacking.We created transgenic Nicotiana attenuata plants that independently express 10 different AMPs under a constitutive 35S promoter and compared the extracellular accumulation of each AMP using a universal and versatile protein quantification method. We coupled a rapid apoplastic peptide extraction with label-free protein quantification by nanoUPLC-MSE analysis using Hi3 method and identified/quantified 7 of 10 expressed AMPs in the transgenic plants ranging from 37 to 91 amino acids in length. The quantitative comparison among the transgenic plant lines showed that three particular peptides, belonging to the defensin, knottin and lipid-transfer protein families, attained the highest concentrations of 91 to 254 pmol per g leaf fresh mass, which identified them as best suited for ectopic expression in N. attenuata. The chosen mass spectrometric approach proved to be highly sensitive in the detection of different AMP types and exhibited the high level of analytical reproducibility required for label-free quantitative measurements along with a simple protocol required for the sample preparation.Heterologous expression of AMPs in plants can result in highly variable and non-predictable peptide amounts and we present a universal quantitative method to confirm peptide stability and extracellular deposition. The method allows for the rapid quantification of apoplastic peptides without cumbersome and time-consuming purification or chromatographic steps and can be easily adapted to other plant species.
Project description:Geminiviruses are single-stranded DNA viruses that can cause significant losses in economically important crops. In recent years, the role of different kinases in geminivirus pathogenesis has been emphasized. Although geminiviruses use several host kinases, the role of phosphatidylinositol 4-kinase (PI4K) remains obscure. We isolated and characterized phosphatidylinositol 4-kinase type II from Nicotiana benthamiana (NbPI4KII) which interacts with the replication initiator protein (Rep) of a geminivirus, chilli leaf curl virus (ChiLCV). NbPI4KII-mGFP was localized into cytoplasm, nucleus or both. NbPI4KII-mGFP was also found to be associated with the cytoplasmic endomembrane systems in the presence of ChiLCV. Furthermore, we demonstrated that Rep protein directly interacts with NbPI4KII protein and influenced nuclear occurrence of NbPI4KII. The results obtained in the present study revealed that NbPI4KII is a functional protein kinase lacking lipid kinase activity. Downregulation of NbPI4KII expression negatively affects ChiLCV pathogenesis in N. benthamiana. In summary, NbPI4KII is a susceptible factor, which is required by ChiLCV for pathogenesis.
Project description:BACKGROUND:Nicotiana benthamiana is an important model organism of the Solanaceae (Nightshade) family. Several draft assemblies of the N. benthamiana genome have been generated, but many of the gene-models in these draft assemblies appear incorrect. RESULTS:Here we present an improved proteome based on the Niben1.0.1 draft genome assembly guided by gene models from other Nicotiana species. Due to the fragmented nature of the Niben1.0.1 draft genome, many protein-encoding genes are missing or partial. We complement these missing proteins by similarly annotating other draft genome assemblies. This approach overcomes problems caused by mis-annotated exon-intron boundaries and mis-assigned short read transcripts to homeologs in polyploid genomes. With an estimated 98.1% completeness; only 53,411 protein-encoding genes; and improved protein lengths and functional annotations, this new predicted proteome is better in assigning spectra than the preceding proteome annotations. This dataset is more sensitive and accurate in proteomics applications, clarifying the detection by activity-based proteomics of proteins that were previously predicted to be inactive. Phylogenetic analysis of the subtilase family of hydrolases reveal inactivation of likely homeologs, associated with a contraction of the functional genome in this alloploid plant species. Finally, we use this new proteome annotation to characterize the extracellular proteome as compared to a total leaf proteome, which highlights the enrichment of hydrolases in the apoplast. CONCLUSIONS:This proteome annotation provides the community working with Nicotiana benthamiana with an important new resource for functional proteomics.
Project description:Various research groups are investigating the production of oil in non-seed biomass such as leaves. Recently, high levels of oil accumulation have been achieved in plant biomass using a combination of biotechnological approaches which also resulted in significant changes to the fatty acid composition of the leaf oil. In this study, we were interested to determine whether medium-chain fatty acids (MCFA) could be accumulated in leaf oil. MCFA are an ideal feedstock for biodiesel and a range of oleochemical products including lubricants, coatings, and detergents. In this study, we explore the synthesis, accumulation, and glycerolipid head-group distribution of MCFA in leaves of Nicotiana benthamiana after transient transgenic expression of C12:0-, C14:0-, and C16:0-ACP thioesterase genes. We demonstrate that the production of these MCFA in leaf is increased by the co-expression of the WRINKLED1 (WRI1) transcription factor, with the lysophosphatidic acid acyltransferase (LPAAT) from Cocos nucifera being required for the assembly of tri-MCFA TAG species. We also demonstrate that the newly-produced MCFA are incorporated into the triacylglycerol of leaves in which WRI1 + diacylglycerol acyltransferase1 (DGAT1) genes are co-expressed for increased oil accumulation.
Project description:Recent work reported that Tomato yellow leaf curl virus (TYLCV) is seed-transmissible in tomato, contrary to previous belief. In this work, we explore whether TYLCV is also a seed-borne virus in another member of the Solanaceae family, the experimental host Nicotiana benthamiana.
Project description:BACKGROUND:Nicotiana benthamiana has been widely used in laboratories around the world for studying plant-pathogen interactions and posttranscriptional gene expression silencing. Yet the exploration of its transcriptome has lagged behind due to the lack of both adequate sequence information and genome-wide analysis tools, such as DNA microarrays. Despite the increasing use of high-throughput sequencing technologies, the DNA microarrays still remain a popular gene expression tool, because they are cheaper and less demanding regarding bioinformatics skills and computational effort. RESULTS:We designed a gene expression microarray with 103,747 60-mer probes, based on two recently published versions of N. benthamiana transcriptome (v.3 and v.5). Both versions were reconstructed from RNA-Seq data of non-strand-specific pooled-tissue libraries, so we defined the sense strand of the contigs prior to designing the probe. To accomplish this, we combined a homology search against Arabidopsis thaliana proteins and hybridization to a test 244k microarray containing pairs of probes, which represented individual contigs. We identified the sense strand in 106,684 transcriptome contigs and used this information to design an Nb-105k microarray on an Agilent eArray platform. Following hybridization of RNA samples from N. benthamiana roots and leaves we demonstrated that the new microarray had high specificity and sensitivity for detection of differentially expressed transcripts. We also showed that the data generated with the Nb-105k microarray may be used to identify incorrectly assembled contigs in the v.5 transcriptome, by detecting inconsistency in the gene expression profiles, which is indicated using multiple microarray probes that match the same v.5 primary transcripts. CONCLUSIONS:We provided a complete design of an oligonucleotide microarray that may be applied to the research of N. benthamiana transcriptome. This, in turn, will allow the N. benthamiana research community to take full advantage of microarray capabilities for studying gene expression in this plant. Additionally, by defining the sense orientation of over 106,000 contigs, we substantially improved the functional information on the N. benthamiana transcriptome. The simple hybridization-based approach for detecting the sense orientation of computationally assembled sequences can be used for updating the transcriptomes of other non-model organisms, including cases where no significant homology to known proteins exists.
Project description:BackgroundNicotiana benthamiana has been widely used for transient gene expression assays and as a model plant in the study of plant-microbe interactions, lipid engineering and RNA silencing pathways. Assembling the sequence of its transcriptome provides information that, in conjunction with the genome sequence, will facilitate gaining insight into the plant's capacity for high-level transient transgene expression, generation of mobile gene silencing signals, and hyper-susceptibility to viral infection.Methodology/resultsRNA-seq libraries from 9 different tissues were deep sequenced and assembled, de novo, into a representation of the transcriptome. The assembly, of 16GB of sequence, yielded 237,340 contigs, clustering into 119,014 transcripts (unigenes). Between 80 and 85% of reads from all tissues could be mapped back to the full transcriptome. Approximately 63% of the unigenes exhibited a match to the Solgenomics tomato predicted proteins database. Approximately 94% of the Solgenomics N. benthamiana unigene set (16,024 sequences) matched our unigene set (119,014 sequences). Using homology searches we identified 31 homologues that are involved in RNAi-associated pathways in Arabidopsis thaliana, and show that they possess the domains characteristic of these proteins. Of these genes, the RNA dependent RNA polymerase gene, Rdr1, is transcribed but has a 72 nt insertion in exon1 that would cause premature termination of translation. Dicer-like 3 (DCL3) appears to lack both the DEAD helicase motif and second dsRNA binding motif, and DCL2 and AGO4b have unexpectedly high levels of transcription.ConclusionsThe assembled and annotated representation of the transcriptome and list of RNAi-associated sequences are accessible at www.benthgenome.com alongside a draft genome assembly. These genomic resources will be very useful for further study of the developmental, metabolic and defense pathways of N. benthamiana and in understanding the mechanisms behind the features which have made it such a well-used model plant.