Draft genome of the honey bee ectoparasitic mite, Tropilaelaps mercedesae, is shaped by the parasitic life history
Ontology highlight
ABSTRACT: Background The number of managed honey bee colonies has considerably decreased in many developed countries in recent years and the ectoparasitic mites are considered as major threats to honey bee colonies and health. However, their general biology remains poorly understood. Results We sequenced the genome and transcriptomes of Tropilaelaps mercedesae, the prevalent ectoparasitic mite infesting honey bees in Asia. The de novo assembled genome sequence (353 Mb) represents 53% of the estimated genome size because of the compression of repetitive sequences; nevertheless, we predicted 15,190 protein-coding genes which were well supported by the mite transcriptomes and proteomic dataes. Although amino acid substitutions have been accelerated within the conserved core genes in of two mites, T. mercedesae and Metaseiulus occidentalis, T. mercedesae has undergone the least gene family expansion and contraction between the seven arthropods we tested. The number of sensory system genes has been dramatically reduced; meanwhile, T. mercedesae may have evolved a specialized cuticle and water homeostasis mechanisms, as well as epigenetic control of gene expression for ploidy compensation between males and females., and water homeostasis. T. mercedesae contains all gene sets required to detoxify xenobiotics, enabling it to be miticide resistant. T. mercedesae is closely associated with a symbiotic bacteriuma (Rickettsiella grylli-like) and DWVdeformed wing virus (DWV), the most prevalent honey bee virus. The presence of DWV in both adult male and female mites was also confirmed by the proteomic analysis. Conclusions T. mercedesae has a very specialized life history and habitat as the ectoparasitic mite strictly dependsing on the honey bee inside the a stable colony. Thus, comparison of the genome and transcriptome sequences with those of a tick and free-living mites and tick has revealed the specific features of the genome shaped by interaction with the honey bee and colony environment. T. mercedesae, as well as Varroa destructor, genome and transcriptome sequences not only provide insights into the mite biology, but may also help to develop measures to control the most serious pests of the honey bee.
INSTRUMENT(S): Q Exactive
ORGANISM(S): Tropilaelaps Mercedesae
SUBMITTER: Stuart Armstrong
LAB HEAD: Julian Hiscox
PROVIDER: PXD004997 | Pride | 2017-01-02
REPOSITORIES: Pride
ACCESS DATA