Identification and quantification of allele specific proteins and homeolog expression bias in an allopolyploid non-model crop by integrating transcriptomics and proteomics.
Ontology highlight
ABSTRACT: The fate of doubled genes, from allopolyploid or autopolyploid origin, is controlled at multiple levels within the central dogma: gene loss or silencing, neo- and/or sub functionalization, inter genomic transfer, allele dominance/co-dominance, differences in transcription/translation efficiency, post translational modifications… These regulatory processes through evolution have caused a plethora of genotype x environment interactions displayed in the modern day phenotypes. The study of non-model crops is challenging but solutions are emerging. More and more, one gets insight into the tolerance mechanisms of a specific genotype. By integrating transcriptomics into our proteomic data, we studied the genetic diversity of an allopolyploid ABB banana, a tolerant genotype, and compared it to two different sensitive AAA genotypes. The root growth of the ABB cultivar was 60 % higher under mild osmotic stress. 234,000 spectra were aligned and quantified, resulting in 2,753 identified root proteins. 383 gene loci displayed genotype specific differential expression whereof 252 showed at least one Single Amino Acid Polymorphism (SAAP). The homeoallelic contribution was assessed using transcriptome read alignment, thus revealing each allele contribution at the RNA level. This provides insight in the structure and the organization of the triploid genome. In the ABB cultivar, allele expressions are supposed to follow a 1/3 and 2/3 pattern. We found that many genes deviated from this expectation and we show that 32 gene loci even displayed a 100% read preference for the allele that was unique for the ABB tolerant genotype , suggesting that the presence of unique alleles and homoelog expression bias is correlated to the observed phenotype.
INSTRUMENT(S): Q Exactive
ORGANISM(S): Musa Acuminata Subsp. Malaccensis
TISSUE(S): Root
SUBMITTER: Jelle van Wesemael
LAB HEAD: Sebastien Carpentier
PROVIDER: PXD006375 | Pride | 2018-01-29
REPOSITORIES: Pride
ACCESS DATA