The rise and fall of major royal jelly proteins during a honey bee (Apis mellifera) workers’ life
Ontology highlight
ABSTRACT: The genome of the western honey bee (Apis mellifera) harbours ten different major royal jelly protein genes (mrjp1-10) which originate from a single-copy precursor via gene duplication. The evolutionary fate of duplicated genes is eventually determined over time as to result in loss due to pseudogenization, or in preservation due to neo- or sub-functionalization. Both fates were already observed in the mrjp gene cluster, as only mrjp1 - 9 are expressed, whereas mrjp10 was pseudogenized and represents an incomplete gene copy. In contrast, MRJP1 underwent neofunctionalization and developed an essential function within the food jelly of queen larvae, to guaranty the survival of the whole colony. We here show combining quantitative real time PCR with quantitative mass spectrometry that expression of most mrjps (mrjp1-5 and 7) shows an age dependent pattern in worker hypopharyngeal glands as well as in brains. Expression increases after hatching until the nurse bee period and is followed by a decrease in older workers that forage for different plant products. Mrjp6 expression deviates considerably from the expression profiles of the other mrjps and transcript abundance does not correlate with protein amount. Thus, either mrjp6 does fulfil a total different function or it might be on its way to pseudogenization. Furthermore, a tissue-specific function of the proteins MRJP8 and 9 in the hypopharyngeal glands and the brain can be excluded, suggesting a more general physiological than a nutritive function for both gene products.
INSTRUMENT(S): Synapt MS
ORGANISM(S): Apis Mellifera (honeybee)
TISSUE(S): Brain
SUBMITTER: Sacha Baginsky
LAB HEAD: Anja Buttstedt
PROVIDER: PXD012618 | Pride | 2019-07-18
REPOSITORIES: pride
ACCESS DATA