Proteomics

Dataset Information

0

IMPAIRED CHONDROCYTE U3 SNORNA EXPRESSION IN OSTEOARTHRITIS AND ITS IMPACT ON THE CHONDROCYTE’S PROTEIN TRANSLATION APARATUS


ABSTRACT: Osteoarthritis (OA) is a chronic debilitating joint disease which is strongly associated with ageing. OA involves pathological cellular processes in all joint structures and affects articular cartilage integrity, leading to dysfunctional joint articulation. The biomolecular processes that catalyze the disturbances in the articular chondrocyte phenotype leading to OA are poorly understood, and it is expected that a comprehensive understanding of the avenues leading to catabolic changes and disruption of articular chondrocyte homeostasis will provide important cues for future treatments of the condition. Chondrocytes are specialized secretory cells with highly active protein translational machinery, enabling the synthesis and maintenance of the protein-rich cartilage extracellular matrix (ECM). Disturbances in chondrocyte protein translation in cartilage development and OA are connected to mTOR activity, ER stress, unfolded protein response (UPR)and CHOP-mediated apoptosis. These responses change the downstream translational activity of the biosynthesized ribosome. The assembled mammalian ribosome is built from ribosomal RNAs (rRNAs), together with more than 80 different protein subunits. At the heart of the ribosome, the 18S rRNA guides the decoding of the mRNA message, while an ancient ribozyme activity in the 28S rRNA forms the core of the peptidyltransferase center that polymerizes the amino acid sequence encoded by the mRNA into functional proteins. Post-transcriptional maturation of rRNAs is an integral part of the biosynthesis of ribosomes and ribonucleolytic processing of the major 47S rRNA precursor into mature 18S, 5.8S, and 28S rRNAs is rate limiting for ribosome biogenesis. The U3 small nucleolar RNA (snoRNA) is an evolutionarily highly conserved box C/D-class snoRNA which catalyzes the endoribonucleolytic processing of the 5’ external transcribed spacer (ETS) of the 47S pre-rRNA by base complementarity-guided pre-rRNA substrate recognition and plays a crucial role in the maturation of 18S rRNA. Although extensively studied in yeast, it was only recently demonstrated that U3 snoRNA is indispensable for rRNA maturation in human cells. Pathways controlling ribosome activity have previously been described in the regulation of chondrocyte homeostasis. We here now postulate that not only ribosome activity is involved in chondrocyte homeostasis, but that OA pathophysiological situations can also cause alterations in chondrocyte ribosome biogenesis with consequences for cellular protein translation. Since U3 snoRNA-driven rRNA production is rate-limiting in ribosome biogenesis, we hypothesized that the U3 snoRNA is critical for chondrocyte homeostasis. In this study we therefor aimed to determine whether OA pathophysiological conditions interact with chondrocyte U3 snoRNA levels, thereby influencing rRNA levels and chondrocyte translation capacity.

INSTRUMENT(S): Q Exactive

ORGANISM(S): Homo Sapiens (human)

TISSUE(S): Cell Culture

SUBMITTER: Aibek Smagul  

LAB HEAD: Mandy Jayne Peffers

PROVIDER: PXD017253 | Pride | 2020-08-21

REPOSITORIES: Pride

Dataset's files

Source:
Action DRS
CT1.mgf Mgf
CT1.mzid.gz Mzid
CT1.pride.mgf.gz Mgf
CT1.pride.mztab.gz Mztab
CT1.raw Raw
Items per page:
1 - 5 of 30
altmetric image

Publications


Although pathways controlling ribosome activity have been described to regulate chondrocyte homeostasis in osteoarthritis, ribosome biogenesis in osteoarthritis is unexplored. We hypothesized that U3 snoRNA, a non-coding RNA involved in ribosomal RNA maturation, is critical for chondrocyte protein translation capacity in osteoarthritis. U3 snoRNA was one of a number of snoRNAs with decreased expression in osteoarthritic cartilage and osteoarthritic chondrocytes. OA synovial fluid impacted U3 sno  ...[more]

Similar Datasets

2024-01-19 | GSE253210 | GEO
2012-11-15 | E-GEOD-42295 | biostudies-arrayexpress
2021-06-19 | GSE172500 | GEO
2014-07-28 | E-GEOD-57218 | biostudies-arrayexpress
2022-05-19 | PXD029116 | Pride
2012-11-15 | GSE42295 | GEO
2019-03-01 | GSE111357 | GEO
2021-12-10 | GSE142045 | GEO
2023-09-19 | GSE242732 | GEO
2023-04-19 | GSE220243 | GEO