Proteomics

Dataset Information

0

Comparative proteome signatures of trace samples by multiplexed Data-Independent Acquisition


ABSTRACT: Single cell transcriptomics have revolutionized fundamental understanding of basic biology and disease. Since transcripts often do not correlate with protein expression, it is paramount to complement transcriptomics approaches with proteome analysis at single cell resolution. Despite continuous technological improvements in sensitivity, mass spectrometry-based single cell proteomics ultimately faces the challenge of reproducibly comparing the protein expression profiles of thousands of individual cells. Here, we combine two hitherto opposing analytical strategies, DIA and Tandem-Mass-Tag (TMT)-multiplexing, to generate highly reproducible, quantitative proteome signatures from ultra-low input samples. While conventional, data-dependent shotgun proteomics (DDA) of ultra-low input samples critically suffers from the accumulation of missing values with increasing sample-cohort size, data-independent acquisition (DIA) strategies do usually not to take full advantage of isotope-encoded sample multiplexing. We also developed a novel, identification-independent proteomics data analysis pipeline to quantitatively compare DIA-TMT proteome signatures across hundreds of samples independent of their biological origin to identify cell types and single protein knockouts. We validate our approach using integrative data analysis of different human cell lines and standard database searches for knockouts of defined proteins. These data establish a novel and reproducible approach to markedly expand the numbers of proteins one detects from ultra-low input samples, such as single cells.

INSTRUMENT(S): Orbitrap Exploris 480

ORGANISM(S): Homo Sapiens (human) Saccharomyces Cerevisiae (baker's Yeast)

SUBMITTER: Claudia Ctortecka  

LAB HEAD: Karl Mechtler

PROVIDER: PXD023574 | Pride | 2021-05-17

REPOSITORIES: Pride

altmetric image

Publications

Comparative Proteome Signatures of Trace Samples by Multiplexed Data-Independent Acquisition.

Ctortecka Claudia C   Krššáková Gabriela G   Stejskal Karel K   Penninger Josef M JM   Mendjan Sasha S   Mechtler Karl K   Stadlmann Johannes J  

Molecular & cellular proteomics : MCP 20211115 1


Single-cell transcriptomics has revolutionized our understanding of basic biology and disease. Since transcript levels often do not correlate with protein expression, it is crucial to complement transcriptomics approaches with proteome analyses at single-cell resolution. Despite continuous technological improvements in sensitivity, mass-spectrometry-based single-cell proteomics ultimately faces the challenge of reproducibly comparing the protein expression profiles of thousands of individual cel  ...[more]

Similar Datasets

2024-08-22 | PXD053462 | Pride
2020-12-16 | PXD016573 | Pride
2023-07-11 | PXD037527 | Pride
2023-07-11 | PXD040455 | Pride
2021-09-09 | PXD025766 | Pride
2022-11-28 | MSV000090792 | MassIVE
2023-10-19 | PXD043817 | Pride
2023-07-24 | E-MTAB-13204 | biostudies-arrayexpress
| PRJNA657245 | ENA
2024-02-27 | GSE239290 | GEO