Nucleoside Analogues are Potent Inducers of Bacterial Mutagenesis
Ontology highlight
ABSTRACT: Drugs targeting DNA and RNA in mammalian cells or viruses can also affect bacteria present in the host and thereby induce the bacterial SOS system. This has the potential to increase mutagenesis and the development of antimicrobial resistance (AMR). Here we have examined nucleoside analogues (NAs) commonly used in anti-viral and anti-cancer therapies for potential effects on mutagenesis in Escherichia coli using the Rifampicin mutagenicity assay. To further explore the mode of action of the NAs, we appliedanalyzed metabolome and proteome of E.coli deletion mutants., and metabolome and proteome analyses. Five out of the thirteen NAs examined, including three nucleoside reverse transcriptase inhibitors (NRTIs) and two anti-cancer drugs, increased the mutation frequency in E. coli more than 25-fold at doses that were within reported plasma concentration range (Pl.CR), but that did not affect bacterial growth. We show that the SOS response is induced and that the increase in mutation frequency is mediated by the TLS polymerase Pol V. Quantitative mass spectrometry based metabolite profiling did not reveal large changes in nucleoside phosphate or other central carbon metabolite pools, which suggests that the SOS induction is an effect of increased replicative stress. Our results suggest that NAs/NRTIs can contribute to the development of AMR.
INSTRUMENT(S): Q Exactive HF
ORGANISM(S): Escherichia Coli
SUBMITTER: Animesh Sharma
LAB HEAD: Marit Otterlei
PROVIDER: PXD025370 | Pride | 2021-07-15
REPOSITORIES: Pride
ACCESS DATA