Hsa-miR-31-5p controls a metabolic switch in psoriatic keratinocytes that identifies therapeutic intervention
Ontology highlight
ABSTRACT: Next to genetic alterations, it is being recognized that the cellular environment also acts as a major determinant in onset and progression of disease. In cases where different cell types contribute to the final disease outcome, this imposes environmental challenges as different cell types likely differ in their extracellular dependencies. A number of skin diseases, including psoriasis is characterized by a combination of keratinocyte hyperproliferation and immune cell activation. Activation of immune cells involves increased glucose consumption thereby intrinsicly limiting glucose availability for other cell types. Thus, these type of skin diseases require metabolic adaptations that enable coexistence between hyperproliferative keratinocytes and activated immune cells in a nutrient-limited environment. Hsa-microRNA-31-5p (miR-31) is highly expressed in keratinocytes within the psoriatic skin. Here we show that miR-31 expression in keratinocytes is induced by limited glucose availability and enables increased survival of keratinocytes under limiting glucose conditions, by increasing glutamine metabolism. In addition, miR-31 induced glutamine metabolism results in secretion of specific metabolites (aspartate and glutamate) but also secretion of immuno-modulatory factors. We show that this miR-31-induced secretory phenotype is sufficient to induce Th17 cell differentiation, a hallmark of psoriasis. Inhibition of glutaminase (GLS) using CB-839 impedes miR31-induced metabolic rewiring and secretion of immuno-modulatory factors. Concordantly, pharmacological targeting of GLS alleviated psoriasis pathology in a mouse model of psoriasis. Together our data illustrate an emerging concept of metabolic interaction across cell compartments that characterizes disease development, which can be employed to design effective treatment options for disease, as shown here for psoriasis.
INSTRUMENT(S): LTQ Orbitrap Velos, Orbitrap Fusion
ORGANISM(S): Homo Sapiens (human)
TISSUE(S): Keratinocyte, Skin
SUBMITTER: Harmjan Vos
LAB HEAD: Boudewijn MT Burgering
PROVIDER: PXD029030 | Pride | 2023-02-06
REPOSITORIES: Pride
ACCESS DATA