Proteomics

Dataset Information

0

Bladder cancer patient urine exosomes


ABSTRACT: Extracellular vesicles (EVs), particularly nano-sized small EV exosomes, are emerging biomarker sources. However, due to heterogeneous populations secreted from diverse cell types, mapping exosome multi-omic molecular information specifically to their pathogenesis origin for cancer biomarker identification is still extraordinarily challenging. Herein, we introduced a novel 3D-structured nanographene immunomagnetic particles (NanoPoms) with unique flower pom-poms morphology and photo-click chemistry for specific marker-defined capture and release of intact exosome. This specific exosome isolation approach leads to the expanded identification of targetable cancer biomarkers with enhanced specificity and sensitivity, as demonstrated by multi-omic exosome analysis of bladder cancer patient tissue fluids using the next generation sequencing of somatic DNA mutations, miRNAs, and the global proteome. The NanoPoms prepared exosomes also exhibit distinctive in vivo biodistribution patterns, highlighting the highly viable and integral quality. The developed method is simple and straightforward, which is applicable to nearly all types of biological fluids and amenable for enrichment, scale up, and high-throughput exosome isolation.

INSTRUMENT(S): 6520A Quadrupole Time-of-Flight LC/MS

ORGANISM(S): Homo Sapiens (human)

TISSUE(S): Urine

SUBMITTER: MEI HE  

LAB HEAD: Mei He

PROVIDER: PXD034454 | Pride | 2022-08-12

REPOSITORIES: Pride

altmetric image

Publications

Nano pom-poms prepared exosomes enable highly specific cancer biomarker detection.

He Nan N   Thippabhotla Sirisha S   Zhong Cuncong C   Greenberg Zachary Z   Xu Liang L   Pessetto Ziyan Z   Godwin Andrew K AK   Zeng Yong Y   He Mei M  

Communications biology 20220704 1


Extracellular vesicles (EVs), particularly nano-sized small EV exosomes, are emerging biomarker sources. However, due to heterogeneous populations secreted from diverse cell types, mapping exosome multi-omic molecular information specifically to their pathogenesis origin for cancer biomarker identification is still extraordinarily challenging. Herein, we introduced a novel 3D-structured nanographene immunomagnetic particles (NanoPoms) with unique flower pom-poms morphology and photo-click chemis  ...[more]

Similar Datasets

2020-10-26 | PXD021769 | Pride
2020-12-08 | PXD021393 | Pride
2023-07-11 | PXD041207 | Pride
2018-09-13 | PXD008324 | Pride
2022-02-17 | PXD026543 | Pride
2022-02-17 | PXD026683 | Pride
2024-03-10 | PXD045186 | Pride
2022-12-21 | PXD039023 | Pride
2023-07-03 | PXD040205 | Pride
2024-03-11 | PXD044526 | Pride