Dynamic interplay between Ydj1 and Hsp90 for interaction with nucleotide binding domain of Hsp70 regulates client maturation
Ontology highlight
ABSTRACT: Hsp90 constitutes one of the major chaperone machinery in the cell. The Hsp70 assists Hsp90 in its client maturation though the underlying basis of the Hsp70 role remains to be explored. In the present study we identified novel mutations in the nucleotide-binding domain of yeast Ssa1 Hsp70 (Ssa1-T175N and Ssa1-D158N) that adversely affect the maturation of Hsp90 clients v-Src and Ste11. The identified Ssa1 amino acids critical for Hsp90 function were also found to be conserved across species such as in E.coli DnaK and the constitutive Hsp70 isoform (HspA8) in humans. These mutations are distal to the C-terminus of Hsp70 that primarily mediates Hsp90 interaction through the bridge protein Sti1. Intriguingly, we found that the bridge protein Sti1 is critical for cellular viability in cells expressing Ssa1-T175N (A1-T175N) or Ssa1-D158N (A1-D158N) as sole Ssa Hsp70. The growth defect was specific for sti1Δ, as deletion of none of the other Hsp90 co-chaperones showed lethality in A1-T175N or A1-D158N. Mass-spectrometry based whole proteome analysis of A1-T175 cells lacking Sti1 showed an altered abundance of various kinases and transcription factors suggesting compromised Hsp90 activity. Further proteomic analysis showed that pathways involved in signaling, signal transduction, and protein phosphorylation are markedly downregulated in the A1-T175N upon repression of Sti1 under DOX regulated promoter. In contrast to Ssa1, the homologous mutations in Ssa4 (Ssa4-T175N/D158N) supported cell growth even in the absence of Sti1. Overall, our data suggest that Ydj1 competes with Hsp90 for binding to Hsp70, and thus regulates Hsp90 interaction with the nucleotide-binding domain of Hsp70. The study thus provides new insight into the Hsp70-mediated regulation of Hsp90 and broadens our understanding of the intricate complexities of the Hsp70-Hsp90 network. This project was done under Deepak Sharma, CSIR-IMTECH, deepaks@imtech.res.in as a PI of the project.
INSTRUMENT(S): Orbitrap Fusion Lumos, Orbitrap Fusion
ORGANISM(S): Saccharomyces Cerevisiae (baker's Yeast)
SUBMITTER: Johannes Fuchs
LAB HEAD: Deepika Gaur
PROVIDER: PXD034983 | Pride | 2022-10-20
REPOSITORIES: Pride
ACCESS DATA