Machine Learning Identifies Plasma Proteomic Signatures of Descending Thoracic Aortic Disease
Ontology highlight
ABSTRACT: Descending thoracic aortic aneurysms and dissections can go undetected until severe and catastrophic, and few clinical indices exist to screen for aneurysms or predict their risk of dissection or rupture. This study generated a plasma proteomic dataset from 150 patients with descending thoracic aortic disease and 52 controls to identify proteomic signatures capable of differentiating descending thoracic aortic disease from non-disease controls, as well as between cases with aneurysm versus descending ‘type B’ dissection. Of the 1,468 peptides and 195 proteins quantified across all samples, 853 peptides and 99 proteins were quantitatively different between disease and control patients (BH adjusted p-value < 0.01 from t-tests). Supervised machine learning (ML) methods were used to classify disease from control and aneurysm from descending dissection cases. The highest precision-recall area under the curve (PR AUC) was achieved on the held-out test set using significantly different proteins between disease and control patients (PR AUC 0.99), followed by input of significant peptides (PR AUC 0.96). Despite no statistically significant proteins between aneurysm and dissection cases, use of all proteins was able to modestly classify between the two disease states (PR AUC 0.77). To overcome correlation in the proteins and enable biological pathway analysis, a disease versus control classifier was optimized using only seven unique protein clusters, which achieved comparable performance to models trained on all/significant proteins (accuracy 0.88, F1-score 0.78, PR AUC 0.90). Model interpretation with permutation importance revealed that proteins in the most important clusters for differentiating disease and control function in coagulation, protein-lipid complex remodeling, and acute inflammatory response.
INSTRUMENT(S): Orbitrap Exploris 480
ORGANISM(S): Homo Sapiens (human)
TISSUE(S): Blood Cell, Blood Plasma
DISEASE(S): Thoracic Aortic Aneurysm
SUBMITTER: Sarah Parker
LAB HEAD: Sarah Parker
PROVIDER: PXD041337 | Pride | 2024-06-16
REPOSITORIES: Pride
ACCESS DATA