MYC is a clinically significant determinant of mTOR inhibitor resistance in breast cancer
Ontology highlight
ABSTRACT: Targeting the PI3K-AKT-mTOR pathway is a promising therapeutic strategy for breast cancer treatment. However, low response rates and the development of acquired resistance to PI3K-AKT-mTOR inhibitors remain major challenges for successful patient treatment. Here, we show that MYC activation is a central and clinically relevant mechanism of resistance to mTOR inhibitors (mTORi) in breast cancer. Multi-omic profiling of mouse invasive lobular carcinoma (ILC) tumors revealed recurrent focal Myc amplification in tumors that acquire resistance to the mTORi AZD8055. The gained MYC activity was significantly associated with biological processes linked to mTORi response. Specifically, MYC counteracted the translation inhibitory effect induced by mTORi by promoting the translation of ribosomal proteins. In vitro and in vivo induction of MYC conferred resistance to AZD8055 as well as the clinically approved mTORi everolimus, both in mouse models of ILC and human breast cancer models. Conversely, AZD8055-resistant ILC cells depended on MYC, as demonstrated by synergistic growth inhibition using mTORi and MYCi combination treatment. Notably, MYC status was significantly associated with poor response to everolimus therapy in metastatic breast cancer patients. Thus, MYC is a clinically relevant determinant of mTORi resistance that may guide the selection of breast cancer patients for mTOR targeted therapies.
INSTRUMENT(S): Orbitrap Fusion
ORGANISM(S): Mus Musculus (mouse)
TISSUE(S): Mammary Gland Tumor Cell
DISEASE(S): Breast Cancer
SUBMITTER: Liesbeth Hoekman
LAB HEAD: Onno Bleijerveld
PROVIDER: PXD041927 | Pride | 2023-05-02
REPOSITORIES: pride
ACCESS DATA