A lysosomal delivery mechanism required for autophagosome degradation
Ontology highlight
ABSTRACT: Autophagy is a finely orchestrated process required for the lysosomal degradation of cytosolic components. The final degradation step is essential for clearing autophagic cargo and recycling macromolecules. We identified a highly conserved transmembrane protein named RNAseK as a novel regulator of autophagosome degradation. Analyses of RNAseK knockout cells revealed that, while autophagosome maturation was intact, cargo degradation was severely disrupted. Importantly, lysosomal protease activity and acidification remained intact in the absence of RNAseK suggesting a specificity to autolysosome degradation. Analyses of lysosome fractions showed reduced levels of a subset of hydrolases in the absence of RNAseK. Of these, the knockdown of PLD3 led to a defect in autophagosome clearance. In addition, the lysosomal fraction of RNAseK-depleted cells exhibited an accumulation of the ESCRT-III complex component, VPS4a, which is required for the lysosomal targeting of PLD3. Altogether, our findings identified a lysosomal hydrolase delivery pathway required to mediate efficient autolysosome degradation.
INSTRUMENT(S): Orbitrap Fusion Lumos
ORGANISM(S): Mus Musculus (mouse)
SUBMITTER: Alex von kriegsheim
LAB HEAD: alex von kriegsheim
PROVIDER: PXD042727 | Pride | 2024-07-05
REPOSITORIES: Pride
ACCESS DATA