ABSTRACT: This data set extends the original data from the UPLC–Orbitrap-MS portion of this article:Molecular cytogenetic identification and nutritional composition evaluation of newly synthesized Triticum turgidum-Triticum boeoticum amphiploids (AABBAbAb)
Project description:This study aims to explore the important factors affecting the characteristics of different parts of pork. Lipidomics and proteomics methods were used to analyze DAL (differential lipids) and DAPs (differential proteins) in five different parts(longissimus dorsi, belly meat, loin, forelegs and buttocks))of Duhua pig(Duroc×Guangdong small spotted pig),to identify potential pathways affecting meat quality, investigating fat deposition in pork and its lipid-protein interactions. The results show that TG (triglyceride) is the lipid subclass with the highest proportion in muscle, and the pathway with the most significantly enriched lipids is GP. DAP clustered on several GO terms closely related to lipid metabolism and lipogenesis (lipid binding, lipid metabolism, lipid transport, and lipid regulation). In KEGG analysis, there are two main DAP aggregation pathways related to lipid metabolism, namely Fatty acid degradation and oxidative phosphorylation. In PPI analysis, we screened out 31 core proteins, among which NDUFA6, NDUFA9 and ACO2 are the most critical. PC (phosphatidylcholine) is regulated by SNX5, THBS1, ANXA7, TPP1, CAVIN2, and VDAC2 in the phospholipid binding pathway. TG is regulated by AUH/HADH/ACADM/ACADL/HADHA in the lipid oxidation and lipid modification pathways. Potential biomarkers are rich in SFA, MUFA and PUFA respectively, the amounts of SFA, MUFA and PUFA in the lipid measurement results are consistent with the up- and down-regulation of potential biomarker lipids. This study clarified the differences in protein and lipid compositions in different parts of Duhua pigs and provided data support for revealing the interactions between pork lipids and proteins. These findings provide contributions to the study of intramuscular fat deposition in pork from a genetic and nutritional perspective.
Project description:The liver has an exceptional capacity for regeneration which is crucial for maintaining liver function. Since transcriptional regulation of genes controlling metabolism and cell division is a hallmark of liver regeneration (LR), we investigated the role of Zinc-finger and homeboxes 2 (ZHX2), a transcription factor critical for regulating liver postnatal gene expression and hepatic lipid hemostasis, in LR. Our results show that hepatocyte-specific Zhx2 knockout (Zhx2-KOhep) enhances LR after 2/3 partial hepatectomy in mice. Proteomics assays revealed higher mitochondrial oxidative phosphorylation (OXPHOS) in Zhx2-KOhep mouse livers. Oxygen consumption rate (OCR) and ATP generation assays confirmed the enhanced OXPHOS in Zhx2-KOhep mouse livers and human hepatocytes with ZHX2 knockdown.
Project description:To elucidate the molecular mechanism mediating the inactivated effect of DMV neurons on fat absorption, we performed an activity-based protein profiling strategy, using Puerarin as a “bait”. The Puerarin-tag probe was synthesized with a photoreactive tag to enrich and visualize target proteins via a photoaffinity chemistry reaction. We verified that probe-tagged Puerarin retains the same effects of increasing fecal lipid excretion as non-tagged Puerarin. Probe-tagged Puerarin was added to the freshly isolated brainstem sample, and 10 doses of non-tagged Puerarin was used as a competitor of probe-tagged Puerarin. Following the photoaffinity reaction, targeted proteins were subsequently assessed by liquid chromatography tandem mass spectrometry (LC-MS).
Project description:Transcriptome analysis was used to investigate the global stress response of the Gram-positive bacterium Bacillus subtilis caused by overproduction of the well-secreted AmyQ α-amylase from Bacillus amyloliquefaciens. Analyses of the control and overproducing strains were carried out at the end of exponential growth and in stationary phase, when protein secretion from B. subtilis is optimal. Among the genes that showed increased expression were htrA and htrB, which are part of the CssRS regulon that responds to high-level protein secretion and heat stress. The analysis of the transcriptome profiles of a cssS mutant compared to the wild-type, under identical secretion stress conditions, revealed several genes with altered transcription in a CssRS-dependent manner, for example citM, ylxF, yloA, ykoJ and several genes of the flgB operon. However, a high affinity CssR-binding was only observed for htrA and htrB, and possibly for citM. In addition, the DNA macroarray approach reveal that several genes of the sporulation pathway are downregulated by AmyQ overexpression, and a group of motility-specific (σD-dependent) transcripts were clearly upregulated. Subsequent flow cytometric analyses demonstrate that upon overproduction of AmyQ as well as a non-secretable variant of the α-amylase, the process of sporulation is severely inhibited. The same experiments were implemented to investigate the expression levels of the hag promoter, a well-established reporter for σD-dependent gene expression. This approach confirmed the observations based on our DNA macroarray analyses and led us to conclude that expression levels of several genes involved in motility are maintained at high levels under all conditions of α-amylase overproduction. Secretion stress was applied by overproducing the well-secreted AmyQ α-amylase (pKTH10 vector) from B. amyloliquefaciens. Besides examining secretion stress in wild-type cells, we compared transcriptome profiles of a cssS mutant strain under conditions of high-level AmyQ production. Samples for transcriptome analyses were collected at the late exponential growth stage (one hour before the transition point) and 3 hours upon entry in the stationary growth phase. Three independent cultures of each strain were used and cells were sampled for macroarray experiments. Duplicate spots were averaged in Array-Pro software (Media Cybernetics, Inc.) and the signal was normalized after background subtraction by calculation of the percentage of total signal per gene using Microsoft Excel.
Project description:Analyze the raw data of the DIA proteome of the longissimus dorsi muscle of 0-month-old and 6-month-old large and small Lijiang pigs to obtain differential proteins
Project description:To further illustrate the mechanism of HEXB mediated YAP1 activation in GBM cells, immunoprecipitation-mass spectrometry (IP-MS) was employed to identify potential binding partners of HEXB.
Project description:Cotton (Gossypium hirsutum L.) is one of the most important cash crops worldwide. In semi-arid/arid regions, drought stress causes growth limitation and decrease of yield. Of all the organs of a plant, fine root is the central part consisting of the root system to contribute to plant water and nutrient taken up. However, the research on the molecular mechanism underlying fine root response to soil drought has not been well understood in cotton. To better characterize the proteomic changes of cotton fine roots under drought stress, 70±5% and 40±5% soil relative water content were designed as control (CK) and drought stress (DS) groups, respectively. Tandem mass tags (TMT) technology was used to determine the proteome profiles in fine roots. The proteomic differences between CK and DS were pairwise compared at 0, 30, and 45 days after drought stress (DAD). A total of 11,628 proteins were identified, of which 10,344 proteins contained quantitative information. According to the morphological, physiological, and biochemical characteristics, 30 and 45 DAD were selected as critical stages for further analysis. Results showed that 118 differentially expressed proteins (DEPs) were up-regulated and 105 down-regulated in DS 30 versus CK 30; 662 DEPs were up-regulated, and 611 were down-regulated in DS 45 versus CK 45. The DEP functions were determined for their classified pathways, mainly associated with carbohydrate metabolism, energy metabolism, fatty acid metabolism, amino acid metabolism, and secondary metabolite biosynthesis. DEPs related to phytohormone and stress/defense response were also identified. To verify the accuracy of the TMT results, 20 DEPs were randomly selected for parallel reaction monitoring (PRM) verification. And results showed that the quantitative results of TMT are consistent with those of PRM, which proved that the TMT results of this study are reliable. In this article we describe changes in the protein profiles occurring in response to drought stress in cotton fine roots. Proteomic analyses of plant responses to stressors could lead to the introduction of cotton cultivars with high resistance to drought stress. Such plants would be valuable for high yielding under drought as well as other unfavorable environmental conditions.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived Triticum aestivum transcriptome (RNA-seq) profiling methods and to evaluate genotypes associated with resistance against the Wheat dwarf virus. Methods: Triticum aestivum mRNA profiles of genotypes associated with resistance against the Wheat dwarf virus were generated by deep sequencing, in four replicates, using Illumina. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays. Conclusions: Our study represents the first detailed analysis of Triticum aestivum transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA and miRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions.
Project description:Mass spectrometry-based wheat proteomics is challenging because the current interpretation of mass spectrometry data relies on public databases that are not exhaustive (UniProtKB/Swiss-Prot) or contain many redundant and poor or un-annotated entries (UniProtKB/TrEMBL). Here we report the development of a manually curated database of the metabolic proteins of Triticum aestivum (hexaploid wheat), named TriMet_DB (Triticum aestivum Metabolic Proteins DataBase). The manually curated TriMet_DB was generated in FASTA format, so that it can be read directly by programs used to interpret the mass spectrometry data. Furthermore, the complete list of entries included in the TriMet_DB is reported in a freely available resource, which includes for each protein the description, the gene code, the protein family,and the allergen name (if any). To evaluate its performance, the TriMet_DB was used to interpret the mass spectrometry data acquired on the metabolic protein fraction extracted from the MEC cultivar of Triticum aestivum.
Project description:To predict the protein that interact with FOXA2 and illustrate the important role and the biological mechanism it may involved of FOXA2 in renal cancer.