The Interferon-inducible NAMPT acts as a protein phosphoribosylase to restrict viral infection
Ontology highlight
ABSTRACT: As obligate intracellular pathogens, viruses often activate host metabolic enzymes to supply intermediates that support progeny production. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the salvage NAD+ synthesis, is an interferon-inducible protein that inhibits the replication of several RNA and DNA viruses with unknown mechanism. Here we report that NAMPT restricts herpes simplex virus 1 (HSV-1) replication via phosphoribosyl-hydrolase activity toward key viral structural proteins, independent of NAD+ synthesis. Deep mining of enriched phosphopeptides of HSV-1-infected cells identified phosphoribosylated viral structural proteins, particularly glycoproteins and tegument proteins. Indeed, NAMPT dephosphoribosylates viral proteins in vitro and in cells. Chimeric and recombinant HSV-1 carrying phosphoribosylation-resistant mutations show that phosphoribosylation promotes the incorporation of structural proteins into HSV-1 virions and subsequent virus entry. Moreover, loss of NAMPT renders mice highly susceptible to HSV-1 infection. The work describes a hidden enzyme activity of a metabolic enzyme in viral infection and host defense, offering a system to interrogate roles of phosphoribosylation in metazoans.
INSTRUMENT(S): Orbitrap Eclipse
ORGANISM(S): Homo Sapiens (human)
TISSUE(S): Cell Culture
SUBMITTER: Ting-Yu Wang
LAB HEAD: Tsui_fen Chou
PROVIDER: PXD050684 | Pride | 2024-09-13
REPOSITORIES: Pride
ACCESS DATA