Placental growth factor mediates pathological uterine vasculature by activating the NFAT5-SGK1 mechano-signaling axis in the endometrium: Implications for pre-eclampsia development.
Ontology highlight
ABSTRACT: After menstruation the uterine spiral arteries are repaired through angiogenesis. This process is tightly regulated by the paracrine communication between endometrial stromal cells (EnSCs) and endothelial cells. Any molecular aberration in these processes can lead to complications in pregnancy including miscarriage or pre-eclampsia (PE). Placental growth factor (PlGF) can increase cell stiffness contributing to pathological angiogenesis but the biomechanisms remain poorly understood. In this study, we investigated whether PlGF contributes to pathological uterine vasculature by disrupting EnSCs and endothelial paracrine communication. We observed that PlGF mediates a tonicity-independent activation of nuclear factor of activated T cells 5 (NFAT5) in EnSCs. NFAT5 activated downstream targets including SGK1, HIF-1α and VEGF-A. In depth characterization of PlGF - conditioned medium (CM) from EnSCs using mass spectrometry and ELISA methods revealed low VEGF-A and an abundance of extracellular matrix organization associated proteins. Secreted factors in PlGF-CM impeded normal angiogenic cues in endothelial cells (HUVECs) by downregulating Notch-VEGF signalling. Interestingly, PlGF-CM failed to support human placental (BeWo) cell invasion through HUVEC monolayer. Inhibition of SGK1 in EnSCs improved angiogenic effects in HUVECs and promoted BeWo invasion, revealing SGK1 as a key intermediate player modulating PlGF mediated anti-angiogenic signalling. Taken together, perturbed PlGF-NFAT5-SGK1 mechano-signaling in the endometrium can contribute to pathological uterine angiogenesis by negatively regulating EnSCs -endothelial crosstalk resulting in poor quality vessels in the uterine microenvironment. Taken together the signaling may impact on normal trophoblast invasion and thus placentation and, may be associated with an increased risk of complications such as PE.
INSTRUMENT(S): Q Exactive
ORGANISM(S): Homo Sapiens (human)
SUBMITTER: Ana Velic
LAB HEAD: Dr. Madhuri Salker
PROVIDER: PXD051697 | Pride | 2024-10-17
REPOSITORIES: Pride
ACCESS DATA