KDR-dependent tyrosine phosphorylation in HTLV-1 transformed cells
Ontology highlight
ABSTRACT: Human T-cell leukemia virus type 1 (HTLV-1) is linked to the development of adult T-cell leukemia (ATL) and the neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax oncoprotein regulates viral gene expression and the NF-kB pathway to promote the survival of HTLV-1 infected T cells. In thsi study, we utilize a kinome-wide shRNA screen to identify the tyrosine kinase KDR/VEGFR2 as an essential survival factor of HTLV-1-transformed T cells. Inhibition of KDR induces apoptosis of Tax expressing HTLV-1-transformed cell lines and CD4+ T cells from HAM/TSP patients. Phosphoproteomics analysis of HTLV-1 transformed cells treated with a KDR inhibitor revealed inhibition of the phosphorylation of multiple receptors/cell surface proteins, ubiquitin conjugating systems, proteases, phosphatases, apoptotic regulatory factors, adhesion/extracellular matrix proteins and viral proteins. This work suggests that HTLV-1 Tax has hijacked KDR kinase activity to promote Tax stability and the proliferation and survival of HTLV-1 infected cells.
INSTRUMENT(S): Orbitrap Fusion Lumos
ORGANISM(S): Homo Sapiens (human)
TISSUE(S): Cell Suspension Culture, T Cell
DISEASE(S): Acute Leukemia
SUBMITTER: Edward Harhaj
LAB HEAD: Edward Harhaj
PROVIDER: PXD051981 | Pride | 2024-06-14
REPOSITORIES: pride
ACCESS DATA