Proteomics

Dataset Information

0

Quantitative Proteomics and Phosphoproteomics Profiling of Meiotic Cell Divisions in the Fission Yeast Schizosaccharomyces pombe


ABSTRACT: In eukaryotes, chromosomal DNA is equally distributed to daughter cells during mitosis, whereas the number of chromosomes is halved during meiosis. Despite considerable progress in understanding the molecular mechanisms that regulate mitosis, there is currently a lack of complete understanding of the molecular mechanisms regulating meiosis. Here, we took advantage of the fission yeast Schizosaccharomyces pombe, for which highly synchronous meiosis can be induced, and performed quantitative proteomics and phosphoproteomics analyses to track changes in protein expression and phosphorylation during meiotic cell divisions. We compared the proteomes and phosphoproteomes of mitotic cells with cells harvested around meiosis I, or meiosis II in strains bearing either the temperature-sensitive pat1-114 allele or conditional ATP analog-sensitive pat1-as2 allele of the Pat1 kinase. Comparing pat1-114 with pat1-as2 also allowed us to investigate the impact of elevated temperature (25°C versus 34°C) on meiosis, an issue that sexually reproducing organisms face due to climate change. Using TMTpro 18plex labeling and phosphopeptide enrichment strategies, we performed quantification of a total of 4673 proteins and 7172 phosphosites in S. pombe. We found that the protein level of 2680 proteins and the rate of phosphorylation of 4005 phosphosites significantly changed during progression of S. pombe cells through meiosis. The proteins exhibiting changes in expression and phosphorylation during meiotic cell divisions were represented mainly by those involved in the meiotic cell cycle, meiotic recombination, meiotic nuclear division, meiosis I, centromere clustering, microtubule cytoskeleton organization, ascospore formation, organonitrogen compound biosynthetic process, carboxylic acid metabolic process, gene expression, and ncRNA processing, among others. In summary, our findings provide global overview of changes in the levels and phosphorylation of proteins during progression of S. pombe cells through meiosis at normal and elevated temperatures, laying the groundwork for further elucidation of the functions and importance of specific proteins and their phosphorylation in regulating meiotic cell divisions in this yeast.

INSTRUMENT(S): Orbitrap Exploris 480

ORGANISM(S): Schizosaccharomyces Pombe 927

SUBMITTER: Peter Barath  

LAB HEAD: Dr Klaus Kratochwill

PROVIDER: PXD053920 | Pride | 2024-10-09

REPOSITORIES: Pride

Dataset's files

Source:
Action DRS
211118_Spombe_uniprot-proteome_UP000002485.fasta Fasta
IP_BSi_005-V004-A01-X0009-1.raw Raw
IP_BSi_005-V004-A02-X0009-1.raw Raw
IP_BSi_005-V004-A03-X0009-1.raw Raw
IP_BSi_005-V004-A04-X0009-1.raw Raw
Items per page:
1 - 5 of 51
altmetric image

Publications

Quantitative proteomics and phosphoproteomics profiling of meiotic divisions in the fission yeast Schizosaccharomyces pombe.

Sivakova Barbara B   Wagner Anja A   Kretova Miroslava M   Jakubikova Jana J   Gregan Juraj J   Kratochwill Klaus K   Barath Peter P   Cipak Lubos L  

Scientific reports 20241004 1


In eukaryotes, chromosomal DNA is equally distributed to daughter cells during mitosis, whereas the number of chromosomes is halved during meiosis. Despite considerable progress in understanding the molecular mechanisms that regulate mitosis, there is currently a lack of complete understanding of the molecular mechanisms regulating meiosis. Here, we took advantage of the fission yeast Schizosaccharomyces pombe, for which highly synchronous meiosis can be induced, and performed quantitative prote  ...[more]

Similar Datasets

2013-09-20 | E-GEOD-49961 | biostudies-arrayexpress
2024-03-21 | PXD048618 | Pride
2013-09-20 | GSE49961 | GEO
2014-06-03 | E-MTAB-2179 | biostudies-arrayexpress
2014-06-03 | E-MTAB-2265 | biostudies-arrayexpress
2019-02-15 | PXD010438 | Pride
2020-08-14 | MSV000085949 | MassIVE
2022-12-31 | GSE210860 | GEO
2002-08-05 | E-SNGR-7 | biostudies-arrayexpress
2002-08-05 | E-SNGR-4 | biostudies-arrayexpress