In vitro investigations on the impact of constituents on fermented dairy on fecal microbiota composition
Ontology highlight
ABSTRACT: The consumption of fermented food has been linked to positive health outcomes due to a variety of functional properties. Fermented dairy constitutes a major dietary source and contains lactoseas main carbohydrate and living starter cultures. To investigate whether nutritional and microbial modulation impacted intestinal microbiota composition and activity, we employed fecal microbiota fermentations and a dairy model system consisting of lactose and β-galactosidase positive and negative Streptococcus thermophilus. Based on 16S rRNA gene based microbial community analysis, we observed that lactose addition increased the abundance of Bifidobacteriaceae, and of Veillonellaceae and Enterobacteraceae in selected samples. The supplied lactose was hydrolysed within 24 h of fermentation and led to higher expression of community indigenous β-galactosidases. Targeted protein analysis confirmed that bifidobacteria contributed most β-galactosidases together with other taxa including Escherichia coli and Anaerobutyricum hallii. Lactose addition led to 1.1-1.8 fold higher levels of butyrate compared to controls likely due to (i) lactate-crossfeeding and (ii) direct lactose metabolism by butyrate producing Anaerobutyricum and Faecalibacterium spp. Representatives of both genera used lactose to produce butyrate in single cultures. When supplemented at around 5.5 log cells mL-1, S. thermophilus or its beta-galactosidase negative mutant outnumbered the indigenous Streptococcaceae population at the beginning of fermentation but had no impact on lactose utilisation and final SCFA profiles. This study brings forward new fundamental insight into interactions of major constituents of fermented dairy with the intestinal microbiota. We provide evidence that lactose addition increases fecal microbiota production of butyrate through cross-feeding and direct metabolism without contribution of starter cultures.
INSTRUMENT(S): Orbitrap Eclipse
ORGANISM(S): Bifidobacteriaceae
SUBMITTER:
Carsten Scavenius
LAB HEAD: Carsten Scavenius
PROVIDER: PXD054534 | Pride | 2025-01-30
REPOSITORIES: pride
ACCESS DATA