Project description:Priestia endophytica FH5, which was isolated from healthy tomato rhizosphere soil, had biological activity against a variety of plant diseases, including R. solani. We isolated the chemicals generated by strain FH5 to better understand the interaction between strain FH5 and R. solani. A transcriptome study of strain FH5 with and without R. solani exposure was also performed. In response to the fungal pathogen R. solani, strain FH5 changed genes linked to amino acid transport, carbohydrate transport, energy generation and conversion, and inorganic ion transport and metabolism, according to our findings.
2021-07-09 | GSE179605 | GEO
Project description:Isolated strains are used for biological control and plant disease control
Project description:During the last decades, the use of plant growth promoting bacteria (PGPB) has been found to increase crop yield and quality and to confer abiotic and biotic stress tolerance. However, until now the PGPB mechanism to enhance plant performances is not clearly defined. Recently, our findings demonstrated that inoculations with both Kocuria rhizophila and Streptomyces violaceoruber, as well as their combination, determined an increase of tomato (Solanum lycopersicum) growth and development. In this study, through an advanced differential proteomic approach on tomato leaves, plant molecular mechanisms affected by both K. rhizophila and S. violaceoruber have been elucidated. To this aim, tomato plants were treated with K. rhizophila and/or Streptomyces violaceoruber cultures and grown on coconut fiber in greenhouse. In particular, PGPB treatments were conducted twice, on seed and after two weeks from the seedling by fertirrigation. Thus, the analyses have been performed at 14 days after sowing (DAS) (T1) and 42 DAS (T2). The results confirmed the growth stimulation ability of K. rhizophila/Streptomyces violaceoruber, showing shoot fresh and dry weight significantly improved at each time sampling. For the early phase (DAS-T1) comparative proteomics analysis of tomato plant leaves, 2 biological replicates were set up for the plants used as control (i.e. not subjected to treatment - samples I1 and I2-control I), 2 biological replicates for plants subjected to treatment with K. rhizophila (samples L1 and L2-treatment L), 2 biological replicates for plants subjected to treatment with S. violaceoruber (samples M1 and M2-treatment M), and 2 biological replicates for plants subjected to treatment with a mix of the two bacterial strains (samples N1 and N2-treatment N), for a total of 8 samples of leaf protein extracts. For the late phase (DAS-T2) comparative proteomics analysis of tomato plant leaves, 2 biological replicates were set up for the plants used as control (i.e. not treated - samples A1 and A2 - control A), 2 biological replicates for plants subjected to treatment with K. rhizophila (samples B1 and B2-treatment B), 2 biological replicates for plants subjected to treatment with S. violaceoruber (samples C1 and C2-treatment C), and 2 biological replicates for plants subjected to treatment with a mix of the two bacterial strains (samples D1 and D2-treatment D), for a total of 8 samples of leaf protein extracts. Proteomic analysis was able to identify 239 and 203 significantly differentially represented proteins (DRPs) at T1 and T2, respectively, comparing PGPB-treated vs. untreated control plants. KEGG Orthology (KO) identified DRP belonging to photosynthesis, biosynthesis of secondary metabolites, and carbon metabolism.
Project description:Biological control is a promising approach to control diseases caused by Pythium species. Unusually for a single genus, the Pythium genus also includes species that can antagonise Pythium plant pathogens, such as Pythium oligandrum. These Pythium plant pathogens are commonly found in the soil such as the broad host-range pathogen Pythium myriotylum and cause various diseases of important crops. While P. oligandrum genes expressed in the interaction with oomycete plant pathogens have been identified previously, the transcriptional response of an oomycete plant pathogen to P. oligandrum has not been investigated. An isolate of P. oligandrum, GAQ1, recovered from soil could antagonise P. myriotylum in a plate-based confrontation assay. The P. oligandrum isolate had a strong disease control effect on soft-rot of ginger caused by P. myriotylum. We investigated the transcriptional interaction between P. myriotylum and P. oligandrum. As part of the transcriptional response of P. myriotylum to the presence of P. oligandrum, putative effector genes such as a sub-set of Kazal-type protease inhibitors were strongly upregulated. P. myriotylum cellulases and elicitin-like putative effectors were also upregulated. In P. oligandrum, cellulases, peroxidases, proteases and NLP effectors were upregulated. The transcriptional response of P. myriotylum suggests clear features of a counter-attacking strategy that may contribute to the variable success and durability of biological attempts to control diseases caused by Pythium species. Whether aspects of this counter-attack could inhibit aspects of this virulence of P. myriotylum is another interesting aspect for future studies.