Project description:In this study, we examined the transcriptome dynamics within the matured fully expanded rice leaf and used strand-specific RNA sequencing to generate a comprehensive transcriptome dataset for the mature rice leaf. The rice Nipponbare (Oryza sativa l. japonica) seedlings were grown in the greenhouse. About 20 days after planting, the fully opened 4th leaves was cut it into seven 3-cm segments, from bottom to tip and labeled as sections 1 to 7, respectively. The tissues were immediately frozen in liquid nitrogen for total RNA extraction. Two biological replicates were collected for each section. Note: All samples in SRA were assigned the same sample accession (SRS685294). This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:The experiment tested organ-specific responses of rice (Oryza sativa ssp. japonica) to cold stress with a special focus on phytohormonal regulation. Cold stress (5°C, 24 h) was applies on the whole plants, leaves or roots. The results showed distinct responses when cold stress was applied on leaves, relating to photosynthesis and sugar synthesis as well as specific changes in phytohormones. On the other hand, stress applied to roots was more similar to the stress on the whole plant indicating roots to be more important in cold stress responses. Acclimation by mild temperature (15°C, 12 h) highlighted changes which are connected even with lower temperature exposure or which are characteristic for untreated organs. Recovery (3 d) indicated ability of plants to restore growth which correlated between individual phytohormones and plant growth. The article connect transcriptome, hormonome, proteome and sugar analyses of rice cold-stress responses.
Project description:Here, we first reported the construction of a phosphoproteomic landscape of 6 tissues, including callus, leaves, roots, shoot meristem (SM), young panicles (YP) and mature panicles (MP), from Nipponbare (Oryza sativa ssp. japonica). By employing a non-gel, quantitative phosphoproteomic approach, a total of 4792 phosphopeptides from 2657 phosphoproteins were identified, which were found to be differentially phosphorylated among tissues.
Project description:Phosphate starvation/sufficient rice seedling, root or shoot Pi-starvation or Pi-sufficient stresses responsible rice genes, including previously unannotated genes were identified by Illumina mRNA-seq technology. 53 million reads from Pi-starvation or Pi-sufficient root or shoot tissues were uniquely mapped to the rice genome, and these included 40574 RAP3 transcripts in root and 39748 RAP3 transcripts in shoot. We compared our mRNA-seq expression data with that from Rice 44K oligomicroarray, and about 95.5% (root) and 95.4% (shoot) transcripts supported by the array were confirmed expression both by the array and by mRNA-seq, Moreover, 11888 (root) and 11098 (shoot) RAP genes which were not supported by array, were evidenced expression with mRNA-seq. Furthermore, we discovered 8590 (root) and 8193 (shoot) previously unannotated transcripts upon Pi-starvation and/or Pi-sufficient.
Project description:Oryza sativa Japonica (rice) is the staple food for all over world population. At the time of germination, the exposure to light may play an important role in the early development of the rice seedling. In order to survey the genes, their functions and role in biological processes, an RNA-Seq based study of 6 libraries prepared from poly-A rich mRNA fraction was carried out to explore transcriptional programs operating in dark and light conditions. For each treatment type, three individual plants were used as biological replicates.
Project description:Lysine acetylation is a dynamic and reversible post-translational modification that plays an imporant role in the gene transcription regulation. Here, we report high quality proteome-scale data for lysine-acetylation sites and proteins in rice (Oryza sativa). A total of 1337 Kac sites in 716 Kac proteins with diverse biological functions and subcellular localizations were identified in rice seedlings.
Project description:MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) regulate gene expression in eukaryotes. Plant miRNAs modulate their targets mainly via messenger RNA (mRNA) cleavage. Small RNA targets have been extensively investigated in Arabidopsis using computational prediction, experimental validation, and degradome sequencing. However, small RNA targets are largely unknown in rice (Oryza sativa). Here, we report global identification of small RNA targets using high throughput degradome sequencing in the rice indica cultivar 93-11 (Oryza sativa L. ssp. indica). 177 transcripts targeted by total of 87 unique miRNAs were identified. Of targets for the conserved miRNAs between Arabidopsis and rice, transcription factors comprise around 70% (58 in 82), indicating that these miRNAs act as masters of gene regulatory nodes in rice. In contrast, non-conserved miRNAs targeted diverse genes which provide more complex regulatory networks. In addition, 5 AUXIN RESPONSE FACTORS (ARF) cleaved by the TAS3 derived ta-siRNAs were also detected. A total of 40 sRNA targets were further validated via RNA ligase-mediated 5’ rapid amplification of cDNA ends (RLM 5’-RACE). Our degradome results present a detailed sRNA-target interaction atlas, which provides a guide for the study of the roles of sRNAs and their targets in rice.
Project description:The resveratrol-producing rice (Oryza sativa L.) inbred line, Iksan 526 (I.526), developed by the expression of the groundnut (Arachis hypogaea) resveratrol synthase 3 (AhRS3) gene in the japonica rice cultivar Dongjin, accumulated both resveratrol and its glucoside, piceid, in leaves and seeds. Especially, ultra-performance liquid chromatography (UPLC) analysis revealed that the biosynthesis of piceid reached peak levels at 20 days after heading (DAH) seeds. To investigate endogenous piceid biosynthesis genes (UGTs), total RNA samples of 20 DAH seeds was used for RNA-seq.