Project description:Investigation of whole genome gene expression level changes in S. pneumoniae KCTC 5080T, S. mitis KCTC 3556T, S. oralis KCTC 13048T, and S. pseudopneumoniae CCUG 49455T. This proves that transcriptional profiling can facilitate in elucidating the genetic distance between closely related strains. A one chip study using total RNA recovered from S. pseudopneumoniae CCUG 49455T with three strain. For the the transcriptome of S. pseudopneumoniae CCUG 49455T was analyzed using the S. pneumoniae R6 microarray platform and compared with those of S. pneumoniae KCTC 5080T, S. mitis KCTC 3556T, and S. oralis KCTC 13048T strains.
Project description:In order to appreciate the presence of surface protein gene homologues in commensal species S. mitis and S. oralis, comparative genomic hybridization studies using DNA microarrays were performed with 8 S. mitis and 11 S. oralis from different geographic locations. The oligonucleotide microarray was designed based on the genomes of S. pneumoniae R6 and TIGR4 as well as S. mitis B6 to include genes of 63 cell surface proteins. The denatured genomic DNA of the S. mitis and S. oralis strains was labeled with Cy3-dCTP and control S. mitis B6 DNA was labeled with Cy5-dCTP. Hybridization was performed following the manufacturers recommendations using an hybridization temperature of 40C for 16 h. For data processing, microarrays were scanned on the laser scanner Pro Scan Array GX (PerkinElmer) with the low resolution of 50 M-5m using ScanArrayExpress Software version 4.0. Photomultiplier tube was adjusted to balance the two fluorescence channels and biochips were scanned with a resolution of 10 M-5m. After elimination of background values fluorescence intensity was determined. Signals that showed an intensity ratio of 0.3 and above were considered to be positive.
Project description:Investigation of whole genome gene expression level changes in S. pneumoniae KCTC 5080T, S. mitis KCTC 3556T, S. oralis KCTC 13048T, and S. pseudopneumoniae CCUG 49455T. This proves that transcriptional profiling can facilitate in elucidating the genetic distance between closely related strains.
Project description:Our group recently transcriptomically characterized coculture growth between Streptococcus mutans and several species of commensal streptococci (Rose et al, 2023; Choi et al 2024). One interaction that stood out was with Streptococcus mitis ATCC 49456, which completely inhibited the growth of S. mutans during biofilm formation. This is due to abudant hydrogen peroxide production by S. mitis ATCC 49456, 3-5x higher than other oral commensal streptococci we have worked with. To understand how the transcriptome of S. mutans is modified in coculture with a high hydrogen peroxide producer, we evaluated the transcriptome during monoculture or coculture growth between the two strains. Our results show differential gene expression (DEGs) in S. mutans that follows other trends we have documented previously with other commensal Streptococcus species, as well as DEGs specific to the interaction with S. mitis.
Project description:We have presented FROG and miniFROG reports for the first genome-scale model, iCJ415, for Streptococcus oralis SK141. The model can be found in the Supplementary Material of the publication by Jensen et al, 2020 cited here.
Project description:RNA-Seq was used to compare the transcriptome of Streptococcus mutans UA159 during growth alone in monoculture, in coculture with Streptococcus gordonii DL1, Streptococcus sanguinis SK36 or Streptococcus oralis 34, and in a quadculture containing all four species. Individual cultures of commensal species Streptococcus gordonii DL1, Streptococcus sanguinis SK36 and Streptococcus oralis 34 were sequenced as well. This revealed a common transcriptome pattern in S. mutans when grown in mixed-species culture, indepenedent of the species identity that S. mutans was cultured with. Additionally, transcriptome changes in the commensal species could also be determined when undergoing competition from S. mutans. RNA-Seq was used to compare the transcriptome of Streptococcus mutans UA159 during growth alone in monoculture or in coculture with Streptococcus sobrinus NIDR 6715, Lactobacillus casei ATCC 4646 or Corynebacterium matruchotii ATCC 14266. These data were compared to previous coculture and quadculture RNA-Seq data with commensal streptococci (GSE209925). These data confirmed a common transcriptome pattern in S. mutans when grown in mixed-species culture with commensal streptococci that is not present with non-commensal streptococci, indepenedent of the species identity that S. mutans was cultured with.
Project description:Human gingival epithelial cells (HGEp) and fibroblasts (HGF) are the main cell types of the peri-implant soft-tissue, with HGEp constantly being exposed to bacteria and HGF residing protected in the connective tissue as long as an intact mucosa-implant seal is preserved. Streptococcus oralis belongs to the commensal bacteria, is highly abundant at healthy implant sites, and might exert host modulatory effects on soft-tissue cells as described for other streptococci. Thus, we aimed to investigate the effects of S. oralis biofilm on HGEp as well as HGF. HGEp or HGF were grown on titanium separately and responded to S. oralis biofilm challenge. The cell condition of HGF was dramatically impaired after 4 hours showing a transcriptional inflammatory and stress response. In contrast, S. oralis challenge induced only transcriptional inflammatory response in HGEp with their cell condition remaining unaffected. Subsequently, HGF were susceptible compared to HGEp. The proinflammatory IL-6 was attenuated in HGF and CXCL8 in HGEp indicating a general tissue-protective role of S. oralis, forasmuch as the HGF are not exposed. In conclusion, an intact implant-mucosa interface is a prerequisite so that commensal biofilms can promote homeostasis for tissue protection.