Project description:Streptomyces sp. MB42 produces antimicrobial compound under the pressence of specific compounds. This experiment is to see which gene cluster upregulated during the treatment of target compound.
Project description:Streptomyces sp. M7 has demonstrated ability to remove lindane from culture media and soils. In this study, we used MS-based label-free quantitative proteomic to understand lindane degradation and its metabolic context in Streptomyces sp. M7. We identified the proteins involved in the up-stream degradation pathway. Our results demonstrated that mineralization of lindane is feasible since proteins from an unusual down-stream degradation pathway were also identified. Degradative steps were supported by an active catabolism that supplied energy and reducing equivalents in the form of NADPH. This is the first study in which degradation steps of an organochlorine compound and metabolic context are elucidate in a biotechnological genus as Streptomyces. These results serve as basement to study other degradative actinobacteria and to improve the degradation processes of Streptomyces sp. M7.
Project description:This study aimed to investigate the variations in the protein composition of Streptomyces sp. PU10 when cultivated with either Impranil (polyestere-polyurethane) or glucose as the carbon source. We analyzed both the intracellular and extracellular protein fractions to gain insights into the intricate processes involving PU degradation, intermediate metabolic pathways in PU degradation, and the connection between primary and secondary metabolism within Streptomyces sp. PU10.
Project description:Actinomycete genomes contain a plethora of orphan gene clusters encoding unknown secondary metabolites, and representing a huge unexploited pool of chemical diversity. The explosive increase in genome sequencing and the massive advance of bioinformatic tools have revolutionized the rationale for natural product discovery from actinomycetes. In this context, we applied a genome mining approach to discover a group of unique catecholate-hydroxamate siderophores termed as qinichelins from Streptomyces sp. MBT76. Quantitative proteomics statistically correlated a gene cluster of interest (qch) to its unknown chemotype (qinichelin), after which structural elucidation of isolated qinichelin was assisted by bioinformatics analysis and verified by MS2 and NMR experiments. Strikingly, intertwined functional crosstalk among four separately located gene clusters was implicated in the biosynthesis of qinichelins.
Project description:Actinobacteria are a rich source of bioactive molecules, and genome sequencing has shown that the vast majority of their biosynthetic potential has yet to be explored. However, many of their biosynthetic gene clusters (BGCs) are poorly expressed in the laboratory, which prevents discovery of their cognate natural products. To exploit their full biosynthetic potential, better understanding of the signals that promote the expression of BGCs is needed. Here, we show that the human stress hormone epinephrine (adrenaline) elicits antibiotic production by Actinobacteria. Catechol was established as the likely eliciting moiety, since similar responses were seen for catechol and for the catechol-containing molecules dopamine and catechin but not for related molecules. Exploration of the catechol-responsive strain Streptomyces sp. MBT84 using mass spectral networking revealed elicitation of a BGC that produces the angucycline glycosides aquayamycin, urdamycinone B and galtamycin C. Heterologous expression of the catechol-cleaving enzymes catechol 1,2-dioxygenase or catechol 2,3 dioxygenase counteracted the eliciting effect of catechol. Thus, for the first time we show the activation of natural product biosynthesis by a human hormone, leading to the identification of the ubiquitous catechol moiety as elicitor of BGCs for siderophores and antibiotics.
Project description:Actinobacteria are a rich source of bioactive molecules, and genome sequencing has shown that the vast majority of their biosynthetic potential has yet to be explored. However, many of their biosynthetic gene clusters (BGCs) are poorly expressed in the laboratory, which prevents discovery of their cognate natural products. To exploit their full biosynthetic potential, better understanding of the signals that promote the expression of BGCs is needed. Here, we show that the human stress hormone epinephrine (adrenaline) elicits antibiotic production by Actinobacteria. Catechol was established as the likely eliciting moiety, since similar responses were seen for catechol and for the catechol-containing molecules dopamine and catechin but not for related molecules. Exploration of the catechol-responsive strain Streptomyces sp. MBT84 using mass spectral networking revealed elicitation of a BGC that produces the angucycline glycosides aquayamycin, urdamycinone B and galtamycin C. Heterologous expression of the catechol-cleaving enzymes catechol 1,2-dioxygenase or catechol 2,3 dioxygenase counteracted the eliciting effect of catechol. Thus, for the first time we show the activation of natural product biosynthesis by a human hormone, leading to the identification of the ubiquitous catechol moiety as elicitor of BGCs for siderophores and antibiotics.