Project description:Sea cucumbers (Holothuroidea; Echinodermata) have the capacity to regenerate lost tissues and organs.We used RNA-Seq to determine gene expression profiles associated with intestinal regeneration in A. japonicus at 3, 7, 14 and 21 days post evisceration (dpe)
Project description:Sea cucumbers (Holothuroidea; Echinodermata), cycle annually between aestivation when water temperature is above about 25°C in the summer and active life when temperature is below about 18°C. We used RNA-Seq to determine gene expression profiles of intestine tissue of A.japonicus during non-aestivation (NA), deep-aestivation (DA), and arousal from aestivation (AA).
Project description:Sea cucumbers (Holothuroidea; Echinodermata) cycle annually between aestivation, when water temperature is above about 25°C in the summer, and active life, when temperature is below about 18°C. We used RNA-Seq to determine gene expression profiles of respiratory tree tissue of A. japonicus during non-aestivation (NA), deep-aestivation (DA), and arousal from aestivation (AA).
Project description:Sea cucumbers (Holothuroidea; Echinodermata) have the capacity to regenerate lost tissues and organs.We used RNA-Seq to determine gene expression profiles associated with intestinal regeneration in A. japonicus at 3, 7, 14 and 21 days post evisceration (dpe) At least 15 individuals per stage, at 3, 7, 14 and 21 days post evisceration (dpe) were used for our experiments.
Project description:Sea cucumbers (Holothuroidea; Echinodermata), cycle annually between aestivation when water temperature is above about 25°C in the summer and active life when temperature is below about 18°C. We used RNA-Seq to determine gene expression profiles of intestine tissue of A.japonicus during non-aestivation (NA), deep-aestivation (DA), and arousal from aestivation (AA). At least 15 individuals per stage, intestines at NA, DA and AA stages were used for our experiments.
Project description:Sea cucumbers (Holothuroidea; Echinodermata) cycle annually between aestivation, when water temperature is above about 25°C in the summer, and active life, when temperature is below about 18°C. We used RNA-Seq to determine gene expression profiles of respiratory tree tissue of A. japonicus during non-aestivation (NA), deep-aestivation (DA), and arousal from aestivation (AA). At least 15 individuals per stage, respiratory tree at NA, DA and AA stages were used for our experiments.
Project description:The sea cucumber Apostichopus japonicus withstands high water temperatures in the summer by suppressing metabolic rate and entering a state of aestivation. We hypothesized that changes in the expression of miRNAs could provide important post-transcriptional regulation of gene expression during hypometabolism via control over mRNA translation. The present study analyzed profiles of miRNA expression in the sea cucumber respiratory tree using Solexa deep sequencing technology. We identified 279 sea cucumber miRNAs, including 15 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA; after at least 15 days of continuous torpor) were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to an active state). We identified 30 differentially expressed miRNAs ([RPM (reads per million) >10, |FC| (|fold change|) ≥1, FDR (false discovery rate) <0.01]) during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-124, miR-124-3p, miR-79, miR-9 and miR-2010 were significantly over-expressed during deep aestivation compared with non-aestivation animals, suggesting that these miRNAs may play important roles in metabolic rate suppression during aestivation.
Project description:The sea cucumber Apostichopus japonicus withstands high water temperatures in the summer by suppressing metabolic rate and entering a state of aestivation. We hypothesized that changes in the expression of miRNAs could provide important post-transcriptional regulation of gene expression during hypometabolism via control over mRNA translation. The present study analyzed profiles of miRNA expression in the sea cucumber respiratory tree using Solexa deep sequencing technology. We identified 279 sea cucumber miRNAs, including 15 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA; after at least 15 days of continuous torpor) were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to an active state). We identified 30 differentially expressed miRNAs ([RPM (reads per million) >10, |FC| (|fold change|) ≥1, FDR (false discovery rate) <0.01]) during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-124, miR-124-3p, miR-79, miR-9 and miR-2010 were significantly over-expressed during deep aestivation compared with non-aestivation animals, suggesting that these miRNAs may play important roles in metabolic rate suppression during aestivation.