Project description:Nowadays, Western diets and lifestyle lead to an increasing occurrence of chronic gut inflammation, that represents an emerging health concern with still a lack of successful therapies. Fermented foods, and their associated Lactic Acid Bacteria, have recently regained popularity for their probiotic potential including the maintenance of gut homeostasis by modulating the immune and inflammatory response. Our study aims to investigate the cross-talk between the food-borne strain Lactiplantibacillus plantarum C9O4 and intestinal epithelial cells in an in vitro inflammation model. Cytokines profile shows the ability of C9O4 to significantly reduce levels of IL-2, IL-5, IL-6, and IFN-γ. Proteomic functional analysis reveals an active host-microbe interaction that highlights an immunoregulatory role of C9O4, able to revert both the detrimental effects of IFN-γ through the JAK/STAT pathway and the apoptosis process in inflamed cells. These results suggest a promising therapeutic role of fermented food-associated microbes for the management of gastrointestinal inflammatory diseases.
Project description:Fermented dairy milks have been associated with many health benefits including the regulation of metabolic dysfunction. Different circulating clinical biomarkers have been used to explore the effect of fermented milks on metabolic health but the development of whole blood transcriptomics has recently been proposed as a source of novel biomarkers for this health outcome. In a randomised, cross-over study, we evaluate the changes in the whole blood transcriptome after the intake of a probiotic yoghurt compared to a milk acidified with gluconic acid in seven healthy young men. The effects of the dairy foods on whole blood gene expression were assessed at three time points during a 6 h postprandial test (800g single dose) and in the fasting state after a daily intake of the products over two-weeks (400g/d). RNA was extracted from Paxgene ® whole blood samples and sequenced on the Illumina HiSeq platform.
Project description:Background: Probiotic-like bacteria treatment has been described to be associated with gut microbiota modifications. Goal: To decipher if the effects of the tested probiotic-like bacteria are due to the bacteria itself or due to the effects of the bacteria on the gut microbiota. Methodology: In this study, gut microbiota has been analyzed from feces samples of subjects with metabolic syndrome and treated with one of the 2 tested probiotic-like bacteria or with the placebo during 3months.
Project description:Lactic acid bacteria (LAB) are of industrial importance in the production of fermented foods, among which sourdough-derived products. Despite their limited metabolic capacity LAB contribute considerably to important characteristics of fermented foods, among which extended shelf-life, microbial safety, improved texture, and enhanced organoleptic properties. Thanks to the considerable amount of LAB genomic information that became available during the last years, transcriptome, and by extension meta-transcriptome studies, are the exquisite research approaches to study whole ecosystem gene expression into more detail. In this study, microarray analyses were performed using RNA sampled during four 10-day spontaneous sourdough fermentations carried out in the laboratory, namely two wheat and two spelt fermentations with daily back-slopping. Hereto, the in-house developed functional gene LAB microarray was used, representing 406 genes that play a key role in sugar and nitrogen metabolism, functional metabolite production, stress responses and health and safety characteristics. The results reveal the activation of different key metabolic pathways, the ability to use different energy sources, and successful acid and oxidative stress responses. Also, a new algorithm was developed to compute a net expression profile for each of the represented genes, thereby exceeding the species level.
Project description:Lactic acid bacteria (LAB) are of industrial importance in the production of fermented foods, among which sourdough-derived products. Despite their limited metabolic capacity LAB contribute considerably to important characteristics of fermented foods, among which extended shelf-life, microbial safety, improved texture, and enhanced organoleptic properties. Thanks to the considerable amount of LAB genomic information that became available during the last years, transcriptome, and by extension meta-transcriptome studies, are the exquisite research approaches to study whole ecosystem gene expression into more detail. In this study, microarray analyses were performed using RNA sampled during four 10-day spontaneous sourdough fermentations carried out in the laboratory, namely two wheat and two spelt fermentations with daily back-slopping. Hereto, the in-house developed functional gene LAB microarray was used, representing 406 genes that play a key role in sugar and nitrogen metabolism, functional metabolite production, stress responses and health and safety characteristics. The results reveal the activation of different key metabolic pathways, the ability to use different energy sources, and successful acid and oxidative stress responses. Also, a new algorithm was developed to compute a net expression profile for each of the represented genes, thereby exceeding the species level.
Project description:Lactic acid bacteria (LAB) are of industrial importance in the production of fermented foods, among which sourdough-derived products. Despite their limited metabolic capacity LAB contribute considerably to important characteristics of fermented foods, among which extended shelf-life, microbial safety, improved texture, and enhanced organoleptic properties. Thanks to the considerable amount of LAB genomic information that became available during the last years, transcriptome, and by extension meta-transcriptome studies, are the exquisite research approaches to study whole ecosystem gene expression into more detail. In this study, microarray analyses were performed using RNA sampled during four 10-day spontaneous sourdough fermentations carried out in the laboratory, namely two wheat and two spelt fermentations with daily back-slopping. Hereto, the in-house developed functional gene LAB microarray was used, representing 406 genes that play a key role in sugar and nitrogen metabolism, functional metabolite production, stress responses and health and safety characteristics. The results reveal the activation of different key metabolic pathways, the ability to use different energy sources, and successful acid and oxidative stress responses. Also, a new algorithm was developed to compute a net expression profile for each of the represented genes, thereby exceeding the species level.