Project description:To globally characterize the role of rnjB gene in E.faecalis, the transcriptome of ∆rnjB and OG1RF grown to exponential phase were compared using DNA microarray analysis
Project description:The goal was to identify genes regulated by YvcL (EF0768) by assessing changes in the yvcL deletion mutant relative to the isogenic wild-type. Wild-type E. faecalis OG1 and the mutant lacking yvcL were cultured in Mueller-Hinton broth to exponential phase. Total RNA was purified, depleted for rRNA, and subjected to preparation of mRNA libraries.
Project description:The goal was to identify genes that are regulated by cell wall stress (bacitracin treatment) in wild-type cells but not in mutant cells lacking CroR, thereby revealing genes of the CroR regulon. Cells of a mutant lacking CroR or its otherwise isogenic wild-type E. faecalis OG1 were cultured in Mueller-Hinton broth and treated (or not) with bacitracin for 15 min. Total RNA was purified, depleted for rRNA, and subjected to preparation of TruSeq stranded mRNA libraries before sequencing on a NextSeq 550 (76-bp single read run).
Project description:To further investigate the homeostatic response of E. faecalis to Fe exposure, we examine the whole-genome transcriptional response of wild-type (WT) exposed to non toxic Fe excess. This experiment correspond the work titled Transcriptomic response of Enterococcus faecalis to iron excess (work in preparation)
Project description:The enterococci comprise a genus of 49 low-GC content Gram-positive commensal species within the Firmicutes phylum that are known to occupy diverse habitats, notably the gastrointestinal core microbiota of nearly every phylum, including human. Of particular clinical relevance are two rogue species of enterococci, Enterococcus faecalis and the distantly related Enterococcus faecium, standing among the nefarious multi-drug resistant and hospital-acquired pathogens. Despite increasing evidence for RNA-based regulation in the enterococci, including regulation of virulence factors, their transcriptome structure and arsenal of regulatory small sRNAs (sRNAs) are not thoroughly understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptomes of E. faecalis V583 and E. faecium AUS0004. We identified 2517 and 2771 transcription start sites (TSS) in E. faecalis and E. faecium, respectively. Based on the identified TSS, we created a global map of s70 promoter motifs. We also revealed features of 5’ and 3’UTRs across the genomes. The transcriptome maps also predicted 150 and 128 sRNA candidates in E. faecalis and E. faecium, respectively, some of which have been identified in previous studies and many of which are new. Finally, we validated several of the predicted sRNAs by Northern Blot in biologically relevant conditions. Comprehensive TSS mapping of two representative strains will provide a valuable resource for the continued development of RNA biology in the Enterococci.
Project description:Enterococcus faecalis, a ubiquitous member of mammalian gastrointestinal flora, is a leading cause of nosocomial infections and a growing public health concern. The enterococci responsible for these infections are often resistant to multiple antibiotics and have become notorious for their ability to acquire and disseminate antibiotic resistances. In the current study, we examined genetic relationships among 106 strains of E. faecalis isolated over the past 100 years, including strains identified for their diversity and used historically for serotyping, strains that have been adapted for laboratory use, and isolates from previously described E. faecalis infection outbreaks. This collection also includes isolates first characterized as having novel plasmids, virulence traits, antibiotic resistances, and pathogenicity island (PAI) components. We evaluated variation in factors contributing to pathogenicity, including toxin production, antibiotic resistance, polymorphism in the capsule (cps) operon, pathogenicity island (PAI) gene content, and other accessory factors. This information was correlated with multi-locus sequence typing (MLST) data, which was used to define genetic lineages. Our findings show that virulence and antibiotic resistance traits can be found within many diverse lineages of E. faecalis. However, lineages have emerged that have caused infection outbreaks globally, in which several new antibiotic resistances have entered the species, and in which virulence traits have converged. Comparing genomic hybridization profiles, using a microarray, of strains identified by MLST as spanning the diversity of the species, allowed us to identify the core E. faecalis genome as consisting of an estimated 2057 unique genes.
Project description:Enterococcus faecium clinical isolates A902 and BM4538, which were resistant to relatively high levels of vancomycin (128 and 64 microg/ml, respectively) and to low levels of teicoplanin (4 microg/ml), and Enterococcus faecalis clinical isolates BM4539 and BM4540, which were resistant to moderate levels of vancomycin (16 microg/ml) and susceptible to teicoplanin (0.25 microg/ml), were studied. They were constitutively resistant by synthesis of peptidoglycan precursors ending with d-alanyl-d-lactate and harbored a chromosomal vanD gene cluster which was not transferable by conjugation to other enterococci. VanX(D) activity, which is not required in the absence of d-Ala-d-Ala, was low in the four strains, although none of the conserved residues was mutated; and the constitutive VanY(D) activity in the membrane fractions was inhibited by penicillin G. The mutations E(13)G in the region of d-alanine:d-alanine ligase (which is implicated in d-Ala1 binding in A902) and S(319)N of the serine involved in ATP binding in BM4538 and a 7-bp insertion at different locations in BM4539 and BM4540 (which led to putative truncated proteins) led to the production of an impaired enzyme and accounted for the lack of d-Ala-d-Ala-containing peptidoglycan precursors. The same 7-bp insertion in vanS(D) of BM4539 and BM4540 and a 1-bp deletion in vanS(D) of A902, which in each case led to a putative truncated and presumably nonfunctional protein, could account for the constitutive resistance. Strain BM4538, with a functional VanS(D), had a G(140)E mutation in VanR(D) that could be responsible for constitutive glycopeptide resistance. This would represent the first example of constitutive van gene expression due to a mutation in the structural gene for a VanR transcriptional activator. Study of these four additional strains that could be distinguished on the basis of their various assortments of mutations confirmed that all VanD-type strains isolated so far have mutations in the ddl housekeeping gene and in the acquired vanS(D) or vanR(D) gene that lead to constitutive resistance to vancomycin.