Project description:Human development relies on the correct replication, maintenance and segregation of our genetic blueprints. How these processes are monitored across embryonic lineages, and why genomic mosaicism varies during development remain unknown. Using pluripotent stem cells, we identify that several patterning signals –including WNT, BMP and FGF– converge into the modulation of DNA replication stress and damage during S-phase, which in turn controls chromosome segregation fidelity in mitosis. We show that the WNT and BMP signals protect from excessive origin firing, DNA damage and chromosome missegregation derived from stalled forks in pluripotency. Cell signalling control of chromosome segregation declines during lineage specification into the three germ layers, but re-emerges in neural progenitors. In particular, we find that the neurogenic factor FGF2 induces DNA replication stress-mediated chromosome missegregation during the onset of neurogenesis, which could provide a rationale for the elevated chromosomal mosaicism of the developing brain. Our results highlight roles for morphogens and cellular identity in genome maintenance that contribute to somatic mosaicism during mammalian development.
Project description:De novo copy number variations in cloned dogs from the same nuclear donor In this study, we aimed to identify de novo post-cloning CNV events and estimated the rate of CNV mosaicism in cloned dogs with the identical genetic background.
Project description:De novo copy number variations in cloned dogs from the same nuclear donor In this study, we aimed to identify de novo post-cloning CNV events and estimated the rate of CNV mosaicism in cloned dogs with the identical genetic background.
Project description:Genetic variation is responsible for the generation of phenotypic diversity, including susceptibility to disease. Two major types of variation are known: single nucleotide polymorphisms (SNPs) and a more recently discovered structural variation, involving changes in copy number (CNVs) of kilobase- to megabase-sized chromosomal segments. Variation caused by CNVs has exceeded the amount of SNP-based differences expected to exist between two unrelated humans. Furthermore, many CNVs have been associated with disease predisposition. It is unknown whether CNVs arise in somatic cells, but it is, however, generally assumed that normal cells are genetically identical. Here we show that CNVs are frequent in healthy somatic cells of adult humans. We tested 34 tissue samples from three subjects and, having analyzed for each tissue <10-6 of all cells expected in an adult human, we observed at least six CNVs, affecting a single organ or one or more tissues of the same subject. The CNVs ranged from 82-176 kb, often encompassing known genes, potentially affecting gene function. Our results point to a paradigm shift in the genetics of somatic cells and indicate that humans are commonly affected by somatic mosaicism for stochastic CNVs, which occur in a substantial fraction of cells. A considerable number of phenotypes and diseases affecting humans are a consequence of a somatic process. Thus, our conclusions will be important for the delineation of genetic factors behind these phenotypes. Consequently, biobanks should consider sampling multiple tissues in order to better address mosaicism in the studies of somatic disorders. Furthermore, forensic medicine laboratories should be sensitized to the issue of underestimated frequency of somatic CNV mosaicism. Keywords: copy number variation (CNV), phenotype diversity, somatic cells
Project description:Chronic infantile neurological cutaneous and articular (CINCA) syndrome is an IL-1-driven autoinflammatory disorder caused mainly by NLRP3 mutations. The pathogenesis of CINCA syndrome patients who carry NLRP3 mutations as somatic mosaicism has not been precisely described because of the difficulty in separating individual cells based on the presence or absence of the mutation. Here, we report the generation of NLRP3-mutant and non-mutant induced pluripotent stem cell (iPSC) lines from two CINCA syndrome patients with somatic mosaicism, and describe their differentiation into macrophages (iPS-MPs). We found that mutant cells are predominantly responsible for the pathogenesis in these mosaic patients because only mutant iPS-MPs showed the disease relevant phenotype of abnormal IL-1β secretion. We also confirmed that the existing anti-inflammatory compounds inhibited the abnormal IL-1β secretion, indicating that mutant iPS-MPs are applicable for drug screening for CINCA syndrome and other NLRP3-related inflammatory conditions. Our results illustrate that patient-derived iPSCs are useful for dissecting somatic mosaicism, and that NLRP3-mutant iPSCs can provide a valuable platform for drug discovery for multiple NLRP3-related disorders.
Project description:Chronic infantile neurological cutaneous and articular (CINCA) syndrome is an IL-1-driven autoinflammatory disorder caused mainly by NLRP3 mutations. The pathogenesis of CINCA syndrome patients who carry NLRP3 mutations as somatic mosaicism has not been precisely described because of the difficulty in separating individual cells based on the presence or absence of the mutation. Here, we report the generation of NLRP3-mutant and non-mutant induced pluripotent stem cell (iPSC) lines from two CINCA syndrome patients with somatic mosaicism, and describe their differentiation into macrophages (iPS-MPs). We found that mutant cells are predominantly responsible for the pathogenesis in these mosaic patients because only mutant iPS-MPs showed the disease relevant phenotype of abnormal IL-1M-NM-2 secretion. We also confirmed that the existing anti-inflammatory compounds inhibited the abnormal IL-1M-NM-2 secretion, indicating that mutant iPS-MPs are applicable for drug screening for CINCA syndrome and other NLRP3-related inflammatory conditions. Our results illustrate that patient-derived iPSCs are useful for dissecting somatic mosaicism, and that NLRP3-mutant iPSCs can provide a valuable platform for drug discovery for multiple NLRP3-related disorders. To characterize iPS and differentiated cells, RNA expression profiles were evaluated by microarray analysis.We analyzed iPC cells and macrophage from healthy volunteers and CINCA syndrome patients. Human ES cella and fibroblasts were used as control.
Project description:Genetic variation is responsible for the generation of phenotypic diversity, including susceptibility to disease. Two major types of variation are known: single nucleotide polymorphisms (SNPs) and a more recently discovered structural variation, involving changes in copy number (CNVs) of kilobase- to megabase-sized chromosomal segments. Variation caused by CNVs has exceeded the amount of SNP-based differences expected to exist between two unrelated humans. Furthermore, many CNVs have been associated with disease predisposition. It is unknown whether CNVs arise in somatic cells, but it is, however, generally assumed that normal cells are genetically identical. Here we show that CNVs are frequent in healthy somatic cells of adult humans. We tested 34 tissue samples from three subjects and, having analyzed for each tissue <10-6 of all cells expected in an adult human, we observed at least six CNVs, affecting a single organ or one or more tissues of the same subject. The CNVs ranged from 82-176 kb, often encompassing known genes, potentially affecting gene function. Our results point to a paradigm shift in the genetics of somatic cells and indicate that humans are commonly affected by somatic mosaicism for stochastic CNVs, which occur in a substantial fraction of cells. A considerable number of phenotypes and diseases affecting humans are a consequence of a somatic process. Thus, our conclusions will be important for the delineation of genetic factors behind these phenotypes. Consequently, biobanks should consider sampling multiple tissues in order to better address mosaicism in the studies of somatic disorders. Furthermore, forensic medicine laboratories should be sensitized to the issue of underestimated frequency of somatic CNV mosaicism. Keywords: copy number variation (CNV), phenotype diversity, somatic cells 31 experiments; each experiment consists of two hybridizations, i.e. regular and dye-swap (62 hybridizations in total); cerebellum from corresponding subject was used as a reference; additionally 12 control self-self hybridizations are included (cerrebellum vs self)