Project description:About 50% of colorectal cancer patients develop liver metastases. Patients with metastatic colorectal cancer have 5-year survival rates below 20% despite new therapeutic regimens. Tumor heterogeneity has been linked with poor clinical outcome, but was so far mainly studied via bulk genomic analyses. In this study we performed spatial proteomics via MALDI mass spectrometry imaging on six patient matched CRC primary tumor and liver metastases to characterize interpatient, intertumor and intratumor hetereogeneity. We found several peptide features that were enriched in vital tumor areas of primary tumors and liver metastasis and tentatively derived from tumor cell specific proteins such as annexin A4 and prelamin A/C. Liver metastases of colorectal cancer showed higher heterogeneity between patients than primary tumors while within patients both entities show similar intratumor heterogeneity sometimes organized in zonal pattern. Together our findings give new insights into the spatial proteomic heterogeneity of primary CRC and patient matched liver metastases.
Project description:We classified samples and deciphered a key genes signature of intratumor heterogeneity by Principal Component Analysis and Weighted Gene Co-expression Network Analysis. We provide a signature of key cancer-heterogeneity genes highly associated with the intratumor spatial gradient and show that it is enriched in genes with correlation between methylation and expression levels.
Project description:Intratumor heterogeneity is a major obstacle to effective cancer treatment. Current methods to study intratumor heterogeneity using single-cell RNA sequencing (scRNAseq) lack information on the spatial organization of cells. While state-of-the art spatial transcriptomics methods capture the spatial distribution, they either lack single cell resolution or have relatively low transcript counts. Here, we introduce spatially annotated single cell sequencing, based on the previously developed functional single cell sequencing (FUNseq) technique, to spatially profile tumor cells with deep scRNA-seq and single cell resolution. Using our approach, we profiled cells located at different distances from the center of a 2D epithelial cell mass. By profiling the cell patch in concentric bands of varying width, we showed that cells at the outermost edge of the patch responded strongest to their local microenvironment, behaved most invasively, and activated the process of epithelial-to-mesenchymal transition (EMT) to migrate to lowconfluence areas. We inferred cell-cell communication networks and demonstrated that cells in the outermost ~10 cell wide band, which we termed the invasive edge, induced similar phenotypic plasticity in neighboring regions. Applying FUNseq to spatially annotate and profile tumor cells enables deep characterization of tumor subpopulations, thereby unraveling the mechanistic basis for intratumor heterogeneity.
Project description:Although epithelial-mesenchymal transition (EMT) has been implicated as the pivotal event in metastasis, there is insufficient evidence related to EMT in clinical settings. Intratumor heterogeneity may lead to underestimation of gene expression representing EMT. In this study, we investigated the expression of EMT-associated genes and microRNAs in primary colorectal cancer while considering intratumor heterogeneity.
Project description:Intratumor heterogeneity is one of the hallmarks of cancers, including breast cancers. We performed spatial transcriptomics to profile heterogeneous cell populations within ER+ breast cancers as well as to determine their importance for estrogen-dependent tumor growth. Our analysis has revealed the key functional compartments for developing targeted therapeutic strategies against ER+ breast cancers.
Project description:G protein-coupled receptor 56 (GPR56/ADGRG1) is an adhesion GPCR with an essential role in brain development and cancer. Elevated expression of GPR56 was observed in the clinical specimens of Glioblastoma (GBM), a highly invasive primary brain tumor. However, we found the expression to be variable across the specimens, presumably due to the intratumor heterogeneity of GBM. Therefore, we re-examined GPR56 expression in public domain spatial gene expression data and single-cell expression data for GBM, which revealed that GPR56 expression was high in cellular tumors, infiltrating tumor cells, and proliferating cells, low in microvascular proliferation and peri-necrotic areas of the tumor, especially in hypoxic mesenchymal-like cells. To gain a better understanding of the consequences of GPR56 downregulation in tumor cells and other molecular changes associated with it, we generated a sh-RNA-mediated control and GPR56 knockdown in the GBM cell line U373 and performed transcriptomics, proteomics, and phospho-proteomics analysis and using the data we propose a putative model to explain this functional and regulatory relationship of the two proteins.
Project description:We classified samples and deciphered a key genes signature of intratumor heterogeneity by Principal Component Analysis and Weighted Gene Co-expression Network Analysis. Transcriptome analysis highlighted a pronounced intratumor architecture reflecting the surgical sampling plan of the study and identified gene modules associated with hallmarks of cancer.
Project description:To reveal the spatial distribution and the difference gene expression pattern of cancer cells in colorectal cancer, Visium spatial transcriptomics of four CRC patients was applied
Project description:Esophageal squamous cell carcinoma (ESCC) is among the most common malignancies, but little is known about the spatial intratumor heterogeneity (ITH) and the temporal clonal evolutionary processes in this cancer. Interestingly, the epigenetic profiling also showed strong evidence of spatial ITH, and the phyloepigenetic trees were extremely similar with the phylogenetic ones, indicating the interplay and co-dependency of genetic and epigenetic alterations in ESCC. We found that several genes were both mutated and hypermethylated at their promoters, such as ASXL1 and EPHA7. Our integrated investigations of the spatial ITH and the temporal clonal evolution might provide insights into developing biomarkers for early diagnosis of ESCC, as well as personalized therapeutic targets for treating this malignancy. DNA methylation profiles of 12 tumor regions and 2 matched normal esophageal epithelial tissues from three M-WES-examined ESCC cases (ESCC01, ESCC03 and ESCC05) were performed using Illumina Infinium HumanMethylation450K platform (Illumina, San Diego, CA) at the Epigenome Center of University of Southern California.