Project description:We present a developmental transcriptome atlas of little millet. It has superior nutritional properties including high micronutrients (Fe, Zn, Ca, Mn), dietary fiber content, and low glycemic index with potential health prospective. This crop is cultivated by tribal people in the marginal areas, and it is adapted to a wide range of growing environments.
Project description:Little millet is a climate-resilient and high-nutrient value plant. The lack of molecular markers severely limits the adoption of modern genomic approaches in millet breeding studies. Here the transcriptome of three samples were sequenced. A total of 4443 genic-SSR motifs were identified in 30,220 unigene sequences. SSRs were found at a rate of 12.25 percent, with an average of one SSR locus per 10 kb. Among different repeat motifs, tri-nucleotide repeat (66.67) was the most abundant one, followed by di- (27.39P), and tetra- (3.83P) repeats. CDS contained fewer motifs with the majority of tri-nucleotides, while 3' and 5' UTR carry more motifs but have shorter repeats. Functional annotation of unigenes containing microsatellites, revealed that most of them were linked to metabolism, gene expression regulation, and response to environmental stresses. Fifty primers were randomly chosen and validated in five little millet and 20 minor millet genotypes; 48% showed polymorphism, with a high transferability (70%) rate. Identified microsatellites can be a noteworthy resource for future research into QTL-based breeding, genetic resource conservation, MAS selection, and evolutionary genetics.
Project description:Screening the transcriptome of drought tolerant variety of little millet (Panicum sumatrense), a marginally cultivated, nutritionally rich, susbsistent crop, can identify genes responsible for its hardiness and enable identification of new sources of genetic variation which can be used for crop improvement. RNA-Seq generated?~?230 million reads from control and treated tissues, which were assembled into 86,614 unigenes. In silico differential gene expression analysis created an overview of patterns of gene expression during exposure to drought and salt stress. Separate gene expression profiles for leaf and root tissue revealed the differences in regulatory mechanisms operating in these tissues during exposure to abiotic stress. Several transcription factors were identified and studied for differential expression. 61 differentially expressed genes were found to be common to both tissues under drought and salinity stress and were further validated using qRT-PCR. Transcriptome of P. sumatrense was also used to mine for genic SSR markers relevant to abiotic stress tolerance. This study is first report on a detailed analysis of molecular mechanisms of drought and salinity stress tolerance in a little millet variety. Resources generated in this study can be used as potential candidates for further characterization and to improve abiotic stress tolerance in food crops.
Project description:Little millet, Panicum sumatrense Roth ex Roem. & Schult., is an important cultivated species under the tribe Paniceae, sub-family Panicoideae and family Poaceae. In this study, for the first time we sequenced the complete chloroplast (cp) genome of P. sumatrense to investigate their phylogenetic relationship in the family Poaceae. The complete cp genome sequence of P. sumatrense is 139,384 bp in length with 38.6% overall GC content and exhibits a typical quadripartite structure comprising one pair of inverted repeats (22,723 bp) separated by a small single-copy region (12,583 bp) and a large single-copy region (81,355 bp). The P. sumatrense cp genome encodes 125 unique genes, which include 91 protein-coding genes, 4 rRNA genes, 30 tRNA genes, and 20 genes were duplicated in the inverted repeat region. This newly determined cp genome (P. sumatrense) could be valuable information for the breeding programs of this cereal crops in the family Poaceae.