Project description:To compare the genome-wide transcriptional effect of ABA and iSB09 in tomato plants, we performed RNA-seq analysis of mock-, 10 uM ABA- or 20 uM iSB09-treated plants. Differential gene expression analysis between mock- and ABA-treated or iSB09-treated seedlings was done with DESeq2 and genes with an absolute value of log2 fold change (log2FC) > 1 or (log2FC) < -1 and p-adjusted value (padj) < 0.05 were selected. iSB09 upregulated and downregulated genes represent a subset of the ABA-responsive genes, which reflects the activation of PYL1-like and PYL4-like ABA receptors in tomato seedlings.
Project description:The tomato SlWRKY3 transcription factor was overexpressed in cultivated tomato (Solanum lycopersicum)and transgenic plants transcriptome was compared to that of wild-type plants.
Project description:To investigate the role of Serine/Arginine-rich proteins RS2Z35 and RS2Z36 in tomato heat stress response and thermotolerance, we established single and double knockouts of the respective splicing factor(s) in tomato We then performed gene expression and splicing analysis using data obtained from RNA-seq of wildtype, single knockout and double knockout plants under control and heat stress conditions (1 h 40°C)
Project description:Plants represent the nutritional basis of virtually all life on earth and protein-rich foods from crop plants are a global megatrend essential for sustaining an increasing human population and counteracting climate change. While the genomes of crops are increasingly elucidated, little is known about crop proteomes – the entirety of proteins that execute and control nearly every aspect of life. To address this shortcoming we optimized a protocol for mapping the proteome of different crops such as Solanum lycopersicum (tomato) fruit and included four technical replicates and three biological replicates from different tomato plants to demonstrate the robustness of the workflow.
Project description:During the last decades, the use of plant growth promoting bacteria (PGPB) has been found to increase crop yield and quality and to confer abiotic and biotic stress tolerance. However, until now the PGPB mechanism to enhance plant performances is not clearly defined. Recently, our findings demonstrated that inoculations with both Kocuria rhizophila and Streptomyces violaceoruber, as well as their combination, determined an increase of tomato (Solanum lycopersicum) growth and development. In this study, through an advanced differential proteomic approach on tomato leaves, plant molecular mechanisms affected by both K. rhizophila and S. violaceoruber have been elucidated. To this aim, tomato plants were treated with K. rhizophila and/or Streptomyces violaceoruber cultures and grown on coconut fiber in greenhouse. In particular, PGPB treatments were conducted twice, on seed and after two weeks from the seedling by fertirrigation. Thus, the analyses have been performed at 14 days after sowing (DAS) (T1) and 42 DAS (T2). The results confirmed the growth stimulation ability of K. rhizophila/Streptomyces violaceoruber, showing shoot fresh and dry weight significantly improved at each time sampling. For the early phase (DAS-T1) comparative proteomics analysis of tomato plant leaves, 2 biological replicates were set up for the plants used as control (i.e. not subjected to treatment - samples I1 and I2-control I), 2 biological replicates for plants subjected to treatment with K. rhizophila (samples L1 and L2-treatment L), 2 biological replicates for plants subjected to treatment with S. violaceoruber (samples M1 and M2-treatment M), and 2 biological replicates for plants subjected to treatment with a mix of the two bacterial strains (samples N1 and N2-treatment N), for a total of 8 samples of leaf protein extracts. For the late phase (DAS-T2) comparative proteomics analysis of tomato plant leaves, 2 biological replicates were set up for the plants used as control (i.e. not treated - samples A1 and A2 - control A), 2 biological replicates for plants subjected to treatment with K. rhizophila (samples B1 and B2-treatment B), 2 biological replicates for plants subjected to treatment with S. violaceoruber (samples C1 and C2-treatment C), and 2 biological replicates for plants subjected to treatment with a mix of the two bacterial strains (samples D1 and D2-treatment D), for a total of 8 samples of leaf protein extracts. Proteomic analysis was able to identify 239 and 203 significantly differentially represented proteins (DRPs) at T1 and T2, respectively, comparing PGPB-treated vs. untreated control plants. KEGG Orthology (KO) identified DRP belonging to photosynthesis, biosynthesis of secondary metabolites, and carbon metabolism.
Project description:The tomato SlWRKY3 transcription factor was overexpressed in cultivated tomato (Solanum lycopersicum)and transgenic plants transcriptome was compared to that of wild-type plants. At least 4 plants were collected for RNA extraction. The aim of the experiment was to compare transcriptomes of 35::SlWRKY3 plants and wild-type plants grown together and on MS (Murashige and Skoog) medium in vitro for 4 weeks. A technical replicate (dye swap) was conducted.