Project description:<p>The study of antimicrobial resistance (AMR) in infectious diarrhea has generally been limited to cultivation, antimicrobial susceptibility testing and targeted PCR assays. When individual strains of significance are identified, whole genome shotgun (WGS) sequencing of important clones and clades is performed. Genes that encode resistance to antibiotics have been detected in environmental, insect, human and animal metagenomes and are known as "resistomes". While metagenomic datasets have been mined to characterize the healthy human gut resistome in the Human Microbiome Project and MetaHIT and in a Yanomani Amerindian cohort, directed metagenomic sequencing has not been used to examine the epidemiology of AMR. Especially in developing countries where sanitation is poor, diarrhea and enteric pathogens likely serve to disseminate antibiotic resistance elements of clinical significance. Unregulated use of antibiotics further exacerbates the problem by selection for acquisition of resistance. This is exemplified by recent reports of multiple antibiotic resistance in Shigella strains in India, in Escherichia coli in India and Pakistan, and in nontyphoidal Salmonella (NTS) in South-East Asia. We propose to use deep metagenomic sequencing and genome level assembly to study the epidemiology of AMR in stools of children suffering from diarrhea. Here the epidemiology component will be surveillance and analysis of the microbial composition (to the bacterial species/strain level where possible) and its constituent antimicrobial resistance genetic elements (such as plasmids, integrons, transposons and other mobile genetic elements, or MGEs) in samples from a cohort where diarrhea is prevalent and antibiotic exposure is endemic. The goal will be to assess whether consortia of specific mobile antimicrobial resistance elements associate with species/strains and whether their presence is enhanced or amplified in diarrheal microbiomes and in the presence of antibiotic exposure. This work could potentially identify clonal complexes of organisms and MGEs with enhanced resistance and the potential to transfer this resistance to other enteric pathogens.</p> <p>We have performed WGS, metagenomic assembly and gene/protein mapping to examine and characterize the types of AMR genes and transfer elements (transposons, integrons, bacteriophage, plasmids) and their distribution in bacterial species and strains assembled from DNA isolated from diarrheal and non-diarrheal stools. The samples were acquired from a cohort of pediatric patients and controls from Colombia, South America where antibiotic use is prevalent. As a control, the distribution and abundance of AMR genes can be compared to published studies where resistome gene lists from healthy cohort sequences were compiled. Our approach is more epidemiologic in nature, as we plan to identify and catalogue antimicrobial elements on MGEs capable of spread through a local population and further we will, where possible, link mobile antimicrobial resistance elements with specific strains within the population.</p>
Project description:A shaving proteomic approach was applied to explore surface protein expression of multi- and pan-drug resistant strains of Pseudomonas aeruginosa isolated from the airways of cystic fibrosis patients with long-term chronic colonization compared to wild-type antibiotic-sensitive strains isolated from patients with recent infection.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strains MS14386.
Project description:Purpose: The present study provides the firstly large-scale characterization of miRNAs in Tetranychus cinnabarinus and the comparison between fenpropathrin resistant and susceptible strains gives a clue on study how miRNA involving in fenpropathrin resistance Methods: Using Illumina sequencing to identify the differentially expressed miRNAs between the fenpropathrin resistant and susceptible strains of Tetranychus cinnabarinus Results: 12 miRNAs that were expressed significantly differently were identified between thethe fenpropathrin resistant and susceptible strains of Tetranychus cinnabarinus
Project description:In this study, the complete genome sequences of Micrococcus luteus strains NCCP 15687 and NCCP 16831 were determined and deposited in the National Culture Collection for Pathogens (NCCP) of South Korea. Genomic DNA was isolated from blood samples from patients infected with M. luteus.
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) is a major threat to human health. Rather than depend on creating new antibiotics (to which bacteria will eventually become resistant), we are employing antibiotic adjuvants that potentiate existing antibiotics. Based on our previous work, loratadine, the FDA-approvide antihistamine, effectively potentiates cell-wall active antibiotics in multiple strains of MRSA. Furthermore, loratadine and oxacillin helped disrupt preformed biofilms and stop them from initially forming in vitro. To gain biological insight into how this potentiation and biofilm inhibition occurs, we used RNA-seq on treated MRSA 43300 cultures to examine antibiotic adjuvant affects transcritome-wide.
Project description:Acinetobacter baumannii causes high mortality in ventilator-associated pneumonia patients and antibiotic treatment is compromised in multi-drug resistant strains resistant to beta-lactams, carbapenems, cephalosporins, polymyxins and tetracyclines. Among COVID-19 patients receiving ventilator support, multi-drug resistant A. baumannii secondary infection is associated with a two-fold increase in mortality. Here we investigated the use of the 8-hydroxyquinoline ionophore PBT2 to break resistance of A. baumannii to tetracycline class antibiotics.