Project description:Cold acclimation in conifers is a complex process, the timing and extent of which reflects local adaptation and varies widely along latitudinal gradients for many temperate and boreal tree species. In spite of their ecological and economic importance, little is known about the global changes in gene expression that accompany autumn cold acclimation in conifers. Using three populations of Sitka spruce (Picea sitchensis) spanning the species range, and a Picea cDNA microarray with 21,840 unique elements, we monitored within and among-population gene expression during the fall. Microarray data were validated for selected genes using real-time PCR. Similar numbers of genes were significantly two-fold upregulated (1,257) and downregulated (967) between late summer and early winter. Among those upregulated were dehydrins, pathogenesis-related/antifreeze genes, carbohydrate and lipid metabolism genes, and genes involved in signal transduction and transcriptional regulation. Among-population microarray hybridizations at early and late autumn time points revealed substantial variation in the autumn transcriptome, some of which may reflect local adaptation. Our results demonstrate the complexity of cold acclimation in conifers, highlight similarities and differences to cold tolerance in annual plants, and provide a solid foundation for functional and genetic studies of this important adaptive process in conifers. Keywords: Time course