Project description:We report on the implications of genetic KO versus MO-mediated KD of the mesoderm-specifying Brachyury paralogues in the Western clawed frog Xenopus tropicalis. While both KO and KD embryos fail to activate the same core gene regulatory network, resulting in virtually identical morphological defects, embryos injected with control or target MOs also show a systemic GC content dependent immune response and many off-target splicing defects.
Project description:Hybridization of eggs and sperm from closely related species can give rise to genetic diversity, or can lead to embryo inviability due to incompatibility. Although central to evolution, the cellular and molecular mechanisms underlying postzygotic barriers that drive reproductive isolation and speciation remain largely unknown. Species of the African Clawed frog Xenopus provide an ideal system to study hybridization and genome evolution. Xenopus laevis is an allotetraploid with 36 chromosomes that arose through interspecific hybridization of diploid progenitors, whereas Xenopus tropicalis is a diploid with 20 chromosomes that diverged from a common ancestor ~48 million years ago. Differences in genome size between the two species are accompanied by organism size differences, and size scaling of the egg and subcellular structures such as nuclei and spindles formed in egg extracts. Nevertheless, early development transcriptional programs, gene expression patterns, and protein sequences are generally conserved. Interestingly, whereas the hybrid produced when X. laevis eggs are fertilized by X. tropicalis sperm (le×ts) is viable, the reverse hybrid (te×ls) dies prior to gastrulation. Here, we applied cell biological tools and high-throughput methods to study the mechanisms underlying hybrid inviability. We reveal that two specific X. laevis chromosomes are incompatible with the X. tropicalis cytoplasm and are mis-segregated during mitosis, leading to unbalanced gene expression at the maternal to zygotic transition, followed by cell-autonomous catastrophic embryo death.
Project description:The aim of the study was to determine the protein composition of cornified claws of the western clawed frog (Xenopus tropicalis) in comparison to clawless toe tips and back skin. Cornified claws develop on toes I, II, III of the hind limbs, which we refer to as hind limb inner (HI) toes. Toes IV, V of the hind limbs, here referred to as hind limb outer (HO) toes lack claws. Proteins were prepared from HI toe tips including claws, HO toe tips and back skin (BSK) of frogs each (F1, F2, F3) and subjected to proteomic analysis.